

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS J. Serb. Chem. Soc. 82 (12) S494–S499 (2017) Supplementary material

SUPPLEMENTARY MATERIAL TO Biodegradation of a mixture of benzophenone, benzophenone-3, caffeine and carbamazepine in a laboratory test filter

MINJA BOGUNOVIĆ¹, VARJA KNEŽEVIĆ², JELICA SIMEUNOVIĆ², IVANA TEODOROVIĆ² and IVANA IVANČEV-TUMBAS¹*[#]

¹University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia and ²University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia

J. Serb. Chem. Soc. 82 (12) (2017) 1445–1459

ADDITIONAL EXPERIMENTAL DETAILS

Phase	Initial level of PPCPs µg L ⁻¹	Duration time	Description	Performed measurements	Sampling frequency
BFD ¹	-	4 week	The filter is conditioned with fresh nonfiltered river water, which is percolated through the test filter. Water in the system is changed	conductivity; t, KMnO ₄ consumption microscopic	1 st and 7 th day of each cycle at the end of
A1 ²	20	8 days	every seven days (in total 4 cycles) Adaptation of	analysis of sand sample pH; O ₂ ;	fourth cycle 1 st and 8 th day
		·	microorganisms	conductivity; t; KMnO ₄ consumption PPCPs	for each parameter
B1 ³	20	8 days	water is percolated through the test filter. Biodegradation is	toxicity tests pH; dissolved O ₂ ; conductivity; t; KMnO ₄ consumption	1^{st} and 8^{th} day
			determined by taking samples after define time intervals	PPCPs toxicity tests	every day 1 st and 8 th day

TABLE S-I. Overview of the experiment

* Corresponding author. E-mail: ivana.ivancev-tumbas@dh.uns.ac.rs

S494

Available on line at www.shd.org.rs/JSCS/

TABL	E S-I. Continu	lea			
Phase	Initial level of PPCPs µg L ⁻¹	Duration time	Description	Performed measurements	Sampling frequency
$\overline{A2^4}$	60	7 days	Adaptation of microorganisms at a higher concentration	* · ·	1 st and 7 th day for each parameter
B2 ⁵	60	7 days	Determination of biodegradation at a higher concentration of PPCPs after defined time intervals	pH; dissolved O ₂ ; conductivity; t; KMnO ₄	1 st and 7 th day every day 1 st and 7 th day

^aThe biofilm development phase; ^badaptation phase 1; ^cbiodegradation phase 1; ^dadaptation phase 2; ^eBiodegradation phase 2

PPCPs analysis

TADLES I Continued

A 2 μ L sample was injected into GC (splitless mode 0.1 min, purge flow 60 mL min⁻¹, at 250 °C). The GC oven was programmed as follows: an initial temperature of 60 °C, held for 3 min, and then was ramped at 5 °C/min to 300 °C, held for 10 min. Samples were analyzed using an GC/MS (Agilent Technologies 7890B, with 5977A MSD). Separation was achieved using a HP-5 MS 30 m×0.25 mm×0.25 µm (Agilent J&W, CA, USA) capillary column with helium as the carrier gas.

Toxicity tests

Daphnia magna *acute toxicity test*. Less than 24 h-old daphnias (neonates) were used in tests. Neonates were transferred into 50-mL glass vessels containing 25 mL of test solution and controls – standard M4 medium,³⁰ and the filtered river Danube sample, in four replicates (5 animals per test vessel) each. The immobilisation of the neonates was recorded after 24 and 48 h, and the results were compared to the controls. Test acceptability criterion for *D. magna* acute toxicity tests is \geq 90 % survival rate in the control. The dissolved oxygen concentration (mg L⁻¹) was measured prior to *D. magna* toxicity tests, in control / test solutions. The measured values were in the range 4.45-6.19 mg L⁻¹, and did not change considerably over *D. magna* toxicity test.

Vibrio fischeri *luminescence inhibition test. V. fischeri* culture (strain NRRL B-11177), supplied by Macherey-Nagel GmbH&Co. KG, Duren, Germany as freeze-dried bacteria (BioFix[®]Lumi), was reconstituted, prior to testing, using the commercial reactivation solution from the same manufacturer. The initial luminescence (I_0) was measured in reactivated bacterial suspension after 15 min

BOGUNOVIĆ et al.

long adjustment period at 15 °C. To achieve a minimum required quantity of bacteria for accurate luminescence measurement,³¹ 0.2 mL of the bacterial test suspension was added into 0.8 mL of test solution / control. The final luminescence (I_{30}) was measured after 30 min exposure of the bacterial suspension to the test solutions / controls. The tests were carried out in triplicates. The results were calculated as the percentage of luminescence inhibition (H_{30}) in test solutions relative to the corresponding controls (standard 2 % NaCl solution / filtered river Danube sample (FD) with addition of 2 % NaCl for salinity adjustment).

The correction factor (fk_{30}) was calculated as follows:

$$fk_{30} = \frac{Ik_{30}}{I_0} \tag{1}$$

(2)

where Ik_{30} stands for the bioluminescence in control after 30 min; I_0 stands for the initial bioluminescence.

The corrected values of I_0 were calculated as follows:

$$Ic_{t} = I_0 f k_{30}$$

The inhibition in each test solution was calculated as follows:

$$H_{30} = \frac{Ic_{\rm t} - I_{30}}{Ic_{\rm t}} 100 \tag{3}$$

where H_{30} stands for the inhibition of bioluminescence after 30 min, %; I_3 stands for the bioluminescence after 30 min.

Name	Abbreviation	Molecular weight, g mol ⁻¹	Octanol / water partition coefficient	
Benzophenone ¹	BP	182.222	3.18	
Benzophenone-3 ²	BP-3	228.247	3.79	
Carbamazepine ³	CBZ	236.274	2.45	
Caffeine ⁴	CF	194.194	-0.07	

TABLE S-III. List of target ions (m/z) of compounds used for analy	vsis
--	------

Analyte	Target ion, m/z	
BP	105	
BP-3	151	
CBZ	193	
CF	194	

S496

SUPPLEMENTARY MATERIAL

TABLE S-IV. Parameters for river water during phase of biofilm development

		01				1		
Parameter	I cycle		II cycle		III cycle		IV cycle	
	Day							
	Ι	VII	Ι	VII	Ι	VII	Ι	VII
pН	8.1	8.2	8.3	7.5	8.02	8.1	8.1	8.02
Conductivity, μ S cm ⁻¹	390	396	394	392	377	393	351	342
Temperature, °C	17	23	26.3	24.2	23.5	26	19	26
$KMnO_4$ consumption, mg L ⁻¹	5.8	2.5	9	6.3	14	12.6	11.4	10

TABLE S-V. Resu	lts of weathering	tests in glass	beakers; removal, %

Phase of	BP		BP-3		CF		CBZ	
experiment	Night-day Dark		Night-day	Dark	Night-day	Dark	Night-day	Dark
	circle		circle		circle		circle	
B1	83	25	15	54	54	47	Not cal-	Not cal-
							culated	culated
B2	90	29	7	53	54	51	0	0

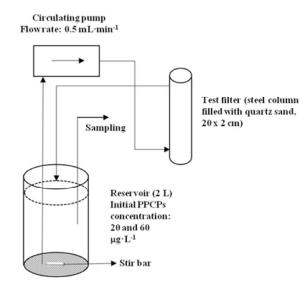
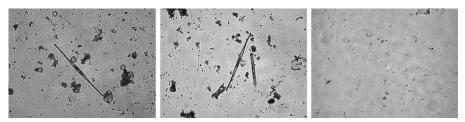
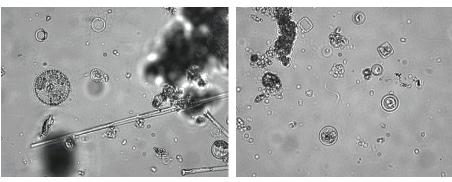
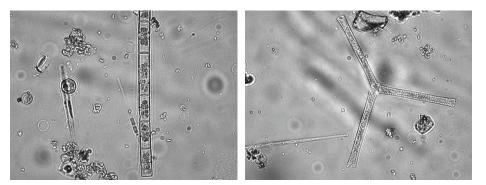
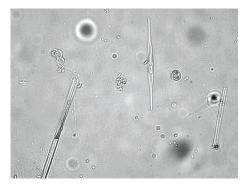


Fig. S-1. Biologically test filter set-up.


Fig. S-2. Images of stained samples showing bacteria (coccal and rod forms) and diatoms.

BOGUNOVIĆ et al.


a) Synedra sp.

c) Melosira sp.

d) Asterionella sp.

e) Nitzschia sp.

Fig. S-3. Images of native samples showing diatoms present in the biofilm.

REFERENCES

- 1. National Center for Biotechnology Information. PubChem Compound Database; CID=3102, https://pubchem.ncbi.nlm.nih.gov/compound/3102 (accessed Dec 2, 2016)
- 2. National Center for Biotechnology Information. PubChem Compound Database; CID=4632, https://pubchem.ncbi.nlm.nih.gov/compound/4632 (accessed Dec 2, 2016)

Available on line at www.shd.org.rs/JSCS/

S498

SUPPLEMENTARY MATERIAL

- 3. National Center for Biotechnology Information. PubChem Compound Database; CID=2554, https://pubchem.ncbi.nlm.nih.gov/compound/2554 (accessed Dec 2, 2016)
- 4. National Center for Biotechnology Information. PubChem Compound Database; CID=2519, https://pubchem.ncbi.nlm.nih.gov/compound/2519 (accessed Dec 2, 2016).