A DFT study of the chemical reactivity of cimetidine A, C and D in the gas phase and in H2O, MeOH and EtOH solvents

Luis Humberto Mendoza-Huizar, Guillermo Salgado-Morán, Wilson Cardona-Villada, Alison Geraldo Pacheco, Daniel Glossman-Mitnik

Abstract


In the present work, the chemical reactivity of cimetidine A, C and D in different solvents was analyzed through the evaluation of global and local DFT reactivity descriptors. In the gas, MeOH and EtOH phases, cimetidine A, C and D exhibit energy differences of 3–11 kcal** mol-1. However, in the aque­ous phase, cimetidine A and D are approximately isoenergetic. The values of the hardness indicate that cimetidine A, C and D are more reactive in the presence of a solvent than in the gas phase. In addition, the results suggested that CimC and CimD are better nucleophiles that CimA. The values of the Fukui function suggest that the more reactive sites of CimA are not modified in the different solvents. In the case of CimC, the more reactive sites to electro­philic and free radical attack are located on the thioether sulfur. For CimD, the number and place of the electrophilic and free radical sites are independent of the solvent.


Keywords


cimetidine; reactivity; HSAB; Fukui; DFTs

References


A. Mejia, W. K. Kraft, Expert Rev. Clin. Pharmacol. 2 (2009) 295

A. Arakcheeva, P. Pattison, A. Bauer-Brandl, H. Birkedal, G. Chapuis, J. Appl. Crystallogr. 46 (2013) 99

B. Hegedüs, S. Görög, J. Pharm. Biomed. Anal. 3 (1985) 303

A. Bauer-Brandl, Int. J. Pharm. 140 (1996) 195

A. Danesh, X. Chen, M. C. Davies, C. J. Roberts, G. H. W. Sanders, S. J. B. Tendler, P. M. Williams, Langmuir 16 (2000) 866

N. L. Calvo, R. M. Maggio, T. S. Kaufman, J. Pharm. Biomed. Anal. 92 (2014) 90

M. Shibata, H. Kokubo, K. Morimoto, K. Morisaka, T. Ishida, M. Inque, J. Pharm. Sci. 72 (1983) 1436

D. A. Middleton, C. S. Le Duff, X. Peng, D. G. Reid, D. Saunders, J. Am. Chem. Soc. 122 (2000) 1161

J. Haleblian, W. McCrone, J. Pharm. Sci. 58 (1969) 911

S. R. Byrn, Solid State Chemistry of Drugs, Academic Press, New York, 1982

L. Borka, J. K. Haleblian, Acta Pharm. Jugosl. 40 (1991) 71

L. Borka, Pharm. Acta Helv. 66 (1991) 16

K. Sato, J. Phys., D: Appl. Phys. 26 (1993) B77

H. Gaboyes, U.S. 4.786.735 (1988)

Z. Wojnarowska, P. Wlodarczyk, K. Kaminski, K. Grzybowska, L. Hawelek, M. Paluch, J. Chem. Phys. 133 (2010) 094507

G. Karpinska, J. C. Dobrowolskia, A. P. Mazureka, J. Mol. Struct. 645 (2003) 37

N. L. Calvo, S. O. Simonetti, R. M. Maggio, T. S. Kaufman, Anal. Chim. Acta 875 (2015) 22

M. Matossian, C. Van Gelderen, P. Papagerakis, L. Zheng, G. T. Wolf, S. Papagerakis, Int. J. Immunopathol. Pharmacol. 27 (2014) 573

D. Olea-Román, J. C. Villeda-García, R. Colorado-Peralta, A. Solano-Peralta, M. San¬chez, I. F. Hernández-Ahuactzi, S. E. Castillo-Blum, J. Mex. Chem. Soc. 57 (2013) 230

A. Singh, A. Gupta, A. K. Rawat, K. R. Ansari, M. A. Quraishi, E. E. Ebenso, Int. J. Electrochem. Sci. 9 (2014) 7614

R. G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989

J. L. Gázquez, J. Mex. Chem. Soc. 52 (2008) 3

P. W. Ayers, J. S. M. Anderson, L. J. Bartolotti, Int. J. Quantum Chem. 101 (2005) 520

P. A. Johnson, L. J. P. Bartolotti, W. Ayers, T. Fievez, P. Geerlings, in Charge Density and Chemical Reactions: A Unified View from Conceptual DFT in Modern Charge Density Analysis, C. Gatti, P. Macchi, Eds., Springer, New York, 2012, p. 715

R. G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922

R. G. Parr, W. Yang, J. Am. Chem. Soc. 106 (1984) 4049

F. Mendez, J. L. Gázquez, J. Am. Chem. Soc. 116 (1994) 9298

F. H. Allen, Acta Crystalogr., Sect. B 58 (2002) 380

S. Grimme, J. Comput. Chem. 27 (2006) 1787

J. D. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10 (2008) 6615

F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297

F. Weigend, Phys. Chem. Chem. Phys. 8 (2006) 1057

A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 113 (2009) 6378

Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, USA, 2004

GaussView Rev. 3.09, Windows version, Semichem Inc., Shawnee Mission, KS, 2009

A. R. Allouche, J. Comput. Chem. 32 (2011) 174

ArgusLab 4.0.1, Planaria Software LLC, Computational Chemistry Soft¬ware by Planaria Software LLC, Seattle, WA, http://www.arguslab.com

V. Krishnakumar, R. Ramasamy, Indian J. Pure Appl. Phys. 40 (2002) 252

I. M. Alecu, J. Zheng, Y. Zhao, D. G. Truhlar, J. Chem. Theory Comput. 6 (2010) 2872

E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, W. T. Yang, J. Am. Chem. Soc.132 (2010) 6498

A. Patil, S. Ganguly, S. Surana, Rasayan J. Chem. 1 (2008) 447

L. Soto, J. Borrás, A. Sancho, A. Fuertes, C. Miravitlles, Acta Crystalogr., C 41 (1985) 1431

L. Soto, J. P. Legros, Polyhedron 7 (1988) 307

G. B. Onoa, V. Moreno, E. Freisinger, B. Lippert, J. Inorg. Biochem. 89 (2002) 237

G. Crisponi, F. Cristiani, V. M. Nurchi, R. Silvagni, M. L. Ganadu, G. Lubinu, L. Naldini, A. Panzanelli, Polyhedron 14 (1995) 1517

V. Nurchi, F. Cristiani, G. Crisponi, M. L. Ganadu, G. Lubinu, A. Panzanelli, L. Naldini, Polyhedron 11 (1992) 2723

F. T. Greenaway, L. M. Brown, J. C. Dabrowiak, M. R. Thompson, V. W. Day, J. Am. Chem. Soc. 102 (1980) 7782




DOI: http://dx.doi.org/10.2298/JSC160512077M

Refbacks

  • There are currently no refbacks.

Comments on this article

View all comments


Copyright (c) 2016 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)