The physico-chemical and thermodynamic properties of the choline chloride-based deep eutectic solvents

Dragan Z. Troter, Zoran B. Todorović, Dušica R. Đokić-Stojanović, Biljana S. Đorđević, Vanja M. Todorović, Sandra S. Konststinović, Vlada B Veljković


This paper reports the physical (density, dynamic viscosity, electrical conductivity and refractive index) and thermodynamic (thermal expansion coefficient, molecular volume, lattice energy and heat capacity) properties of choline chloride (ChCl):propylene glycol, ChCl:1,3-dimethylurea and ChCl:thiourea deep eutectic solvents (DESs) (1:2 molar ratio) at atmospheric pressure as a function of temperature over the range of 293.15-363.15 K. Their properties were also compared with those of some already characterized ChCl-based DESs, namely ChCl:ethylene glycol, ChCl:glycerol and ChCl:urea (1:2 molar ratio). Density, viscosity and refractive index of all DESs decrease with increasing temperature while electrical conductivity increases. Viscosity and conductivity of the tested DESs were fitted by both Arrhenius and Vogel-Tamman-Fulcher equations. The molar enthalpy, entropy and Gibbs energy of activation, determined using the Eyring theory, demonstrates the interactional factor as predominant over the structural factor for all DES systems. The fractional Walden rule, used to correlate molar conductivity and viscosity, showed an excellent linear behavior. It was shown that ChCl:propylene glycol DES had properties similar to ChCl:ethylene glycol and ChCl:glycerol DESs. However, the properties (density, viscosity and electrical conductivity) of ChCl:1,3-dimethylurea and ChCl:thiourea DESs were inferior to those of the ChCl:urea DES.


characterization, eutectic, solvent, glycols, amides

Full Text:

PDF (2,229 kB)


T. Welton, Chem. Rev. 99 (1999) 2071

J. F. Brennecke, E. J. Maginn, AIChE J. 47 (2001) 2384

A. Shariati, K. Gutkowski, C. J. Peters, AIChE J. 51 (2005) 1532

M. Cvjetko Bubalo, S. Vidović, I. Radojčić Redovniković, S. Jokić, J. Chem. Technol. Biotechnol. 90 (2015) 1631

D. Z. Troter, Z. B. Todorović, D. R. Đokić-Stojanović, O. S. Stamenković, V. B. Veljković, Renewable Sustainable Energy Rev. 61 (2016) 473

K. M. Docherty, C. F. Kulpa, Green Chem. 7 (2005) 185-189.

D. Zhao, Y. Liao, Z. Zhang, Clean-Soil Air Water 35 (2007) 42

A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, R. K. Rasheed, J. Am. Chem. Soc. 126 (2004) 9142

M. Avalos, R. Babiano, P. Cintas, J. L. Jimenez, J. C. Palacios, Angew. Chem. Int. Ed. 45 (2006) 3904

H. G. Morrison, C. C. Sun, S. Neervannan, Int. J. Pharm. 378 (2009) 136

A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, V. Tambyrajah, Chem. Commun. 1 (2003) 70

J. K. Blusztajn, Science 281 (1998) 794.

S. S. Konstantinović, B. R. Danilović, J. T. Ćirić, S. B. Ilić, D. S. Savić, V. B. Veljković, Chem. Ind. Chem. Eng. Q. 22 (2016) 461

K. Shahbaz, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, Thermochim. Acta 515 (2011) 67

K. Shahbaz, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, Fluid Phase Equilib. 319 (2012) 48

K. Shahbaz, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, Fluid Phase Equilib. 354 (2013) 304

F. S. Mjalli, K. Shahbaz, I. M. AlNashef, Thermochim. Acta 614 (2015) 185

S. Mjalli, Fluid Phase Equilib. 409 (2016) 312

R. B. Leron, A. N. Soriano, M. H. Li, J. Taiwan Inst. Chem. Eng. 43 (2012) 551

K. Shahbaz, S. Baroutian, F. S. Mjalli, M. A. Hashim, I. M. AlNashef, Thermochim. Acta 527 (2012) 59

F. Mjalli, N. M. Abdel-Jabbar, Fluid Phase Equilib. 381 (2014) 71

A. Yadav, S. Trivedi, R. Rai, S. Pandey, Fluid Phase Equilibr. 367 (2014) 135

A. Yadav, S. Pandey, J. Chem. Eng. Data 59 (2014) 2221

R. B. Leron, M. H. Li, J. Chem. Thermodyn. 54 (2012) 293

J. Jacquemin, P. Husson, A. A. H. Padua, V. Majer, Green Chem. 8 (2006) 172

H. Rodriguez, J. F. Brennecke, J. Chem. Eng. Data 51 (2006) 2145

V. Constantin, A. K. Adya, A.-M. Popescu, Fluid Phase Equilibr. 395 (2015) 58

A. M. Popescu, V. Constantin, A. Florea, A. Baran, Rev. Chim. 62 (2011) 531

O. Ciocirlan, O. Iulian, O. Croitoru, Rev. Chim. 61 (2010) 721

L. Glasser, J. Solid State Chem. 206 (2013) 139

F. Chemat, H. Anjum, A. M. Shariff, P. Kumar, T. Murugesan, J. Mol. Liq. 218 (2016) 301

C. Florindo, F. S. Oliveira, L. P. N. Rebelo, A. M. Fernandes, I. M. Marrucho, ACS Sustainable Chem. Eng. 2 (2014) 2416

F. Chemat, H. J. You, K. Muthukumar, T. Murugesan, J. Mol. Liq. 212 (2015) 605

W. M. Haynes, CRC Handbook of chemistry and physics, in: A ready reference book of chemical and physical data, 94th ed., CRC Press, Taylor & Francis Group, Boca Raton, Fl, USA, 2013, 12-21.

O. O. Okoturo, T. J. Van der Noot, J. Electroanal. Chem. 568 (2004) 167

I-W. Sun, Y.-C. Lin, B.-K. Chen, C.-W. Kuo, C.-C. Chen, S.-G. Su, P.-R. Chen, T.-Y. Wu, Int. J. Electrochem. Sci. 7 (2012) 7206

J. Jacquemin, P. Husson, A. A. H. Padua, V. Majer, Green Chem. 8 (2006) 172-180.

A. M. Popescu, Rev. Chim. 44 (1999) 765

G. J. Janz, R. P. T. Tomkins, C. B. Allen, J. R. Downey, G. L. Gardner, U. Krebs, S.K. Singer, J. Phys. Chem. Ref. Data 4 (1975) 871

T. Y. Wu, S.-G. Su, Y. C. Lin, H. P. Wang, M. W. Lin, S. T. Gung, I. W. Sun, Electrochim. Acta 56 (2010) 853

C. R. Ashworth, R. P. Matthews, T. Welton, P. A. Hunt, Phys. Chem. Chem. Phys. 18 (2016) 18145

P. Bonhöte, A. P. Dias, M. Armand, N. Papageorgiou, K. Kalyanasundaram, M. Gratzel, Inorg. Chem. 35 (1996) 1168

A. García, S. Aparicio, R. Ullah, M. Atilhan, Energy fuels 29 (2015) 2616

S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, J. Phys. Chem. Ref. Data 35 (2006) 1475

M. Aniya, M. Ikeda, Materials 3 (2010) 5246

W. Xu, E. I. Cooper, C. A. Angell, J. Phys. Chem. B 107 (2003) 6170

C. A. Angell, Ionic liquids in the temperature range 150-1500 K: Patterns and problems (Chapter 1) in: M. Gaune-Escard, K.R. Seddon (Eds.), Molten salts and ionic liquids: Never the twain?, John Wiley & Sons, Inc., USA, 2010, pp. 1-24

K. Kubota, K. Tamaki, T. Nohira, T. Goto, R. Hagiwara, Electrochim. Acta 55 (2010) 1113

C. A. Angell, W. Xu, M. Yoshizawa-Fujita, A. Hayashi, J.-P. Belieres, P. Lucas, M. Videa, Z.-F. Zhao, K. Ueno, Y. Ansari, J. Thomson, D. Gervasio, Physical chemistry of ionic liquids: Inorganic and organic as well as protic and aprotic, in H. Ohno (Ed.), Electrochemical aspects of ionic liquids, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011, pp. 5-33

M. V. Šušić, S. V. Mentus, J. Chem. Phys. 62 (1975) 744

M. Yoshizawa, W. Xu, C. A. Angell, J. Am. Chem. Soc. 125 (2003) 15411

D. Rengstl, V. Fischer, W. Kunz, Phys. Chem. Chem. Phys. 16 (2014) 22815

M. Born, E. Wolf, Principles of Optics: Electromagnetic theory of propagation, interference and diffraction of light, 7th Expanded Edition, Cambridge University Press, United Kingdom, 1999. pp. 11-14.

H. Wang, Y. Jia, X. Wang, J. Ma, Y. Jing, J. Chil. Chem. Soc. 57 (2012) 1208

V. M. Parikh, Absorption spectroscopy of organic molecules, Addison-Wesley Publishing Company, London, 1974, p. 258

D. Z. Troter, M. Z. Zlatković, B. S. Đorđević, D. R. Đokić-Stojanović, S. S. Konstantinović, Z. B. Todorović, V. B. Veljković, in Proceeding of 13th International Conference on Fundamental and Applied Aspects of Physical Chemistry, (2016), Belgrade, Serbia, Preparation and FTIR characterization of choline chloride-based deep eutectic solvents with thiourea and dimethylurea, Society of Physical Chemists of Serbia, Belgrade, 2006, pp. 159-162

N. R. Rao, R. Venkataraghavan, Spectrochimica Acta 18 (1962) 541



  • There are currently no refbacks.

Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)