Biodiesel synthesis and kinetic analysis based on MnCO3/Na-silicate as heterogeneous catalyst

Yanan Zhang, Hui Liu, Xiaochan Zhu, Ivana Lukić, Miodrag Zdujić, Xiang Shen, Dejan Skala


Тhe MnCO3/Na-silicate catalyst in the form of solid particles was prepared by mixing of MnCO3 and sodium silicate with Mn/Na/Si molar ratio of 4.65:1:1.65, extrusion and pelletization. The fraction of MnCO3/Na-silicate particles between 0.99 and 1.99 mm was used as catalyst for transesterification of soybean oil in batch autoclave at different conditions: 388–468 K, methanol-to-oil molar ratio from 12:1 to 30:1, using 5% and 10% of catalyst based on mass of oil. The complete triacylglycerols (TAG) conversion and 100% yield of fatty acid methyl ester (FAME) was obtained after 1 h at 458 K, 18:1 methanol-to-oil molar ratio and 10% of catalyst. Kinetics of transesterification process was analyzed by three models: the simple first order irreversible reaction rate as well as more complex models recently reported in literature. The catalyst reuse in transesterification process was tested and the average values of 99.0% of TAG conversion and 97.5% of FAME yield were obtained after 8 consecutive runs. Different techniques were used to characterize fresh and used MnCO3/Na-silicate catalyst. Determined amounts of leached Na (<500 ppm) and Mn (<20 ppm) in biodiesel phase implied that homogeneous-heterogeneous process influences the catalyst selectivity, whereby leached Na enables complete transformation of TAG into FAME.


MnCO3/Na-silicate; Transesterification; Kinetic; Reusability

Full Text:

PDF (1,929 kB)


S.L. Yan, S. Mohan, C. DiMaggio, M. Kim, K.Y.S. Ng, S.O. Salley, Fuel 89 (2010) 2844

W. Jiang, H.F. Lu, T. Qi, S.L. Yan, B. Liang, Biotechnol. Adv.28 (2010) 620

X.Yu, Z. Wen, H.Li, S.-T. Tu,J.Yan, Fuel 90 (2011) 1868

K. Gombotz, R. Parette, G. Austic, D. Kannan, J.V. Matson, Fuel 92 (2012) 9

M. Zabeti, W.M.A.W. Daud,M.K. Aroua, Fuel Process Technol. 90 (2009) 770

Y.R. Rao, P.K. Zubaidha, J.N. Reddy, D.D. Kondhare,D.S.Sushma, Green Sust. Chem.2 (2012) 14

Y.R. Rao, P.K. Zubaidha, J.N. Reddy, D.D. Kondhare, S.S. Deshmukh, S.P. Saiprakash, Catal. Sust. Energ. 1 (2013) 22

L. Wan, H. Liu, S. Nasreen, I. Lukić, D. Skala, Chem. Ind. Chem. Eng. Q, 2017, accepted for publication

L. Wan, H. Liu, D. Skala, Appl.Catal. B 152–153 (2014) 352

X. Zhu, H. Liu, D. Skala, Chem. Ind. Chem. Eng. Q.22 (2016) 431

I. Lukić, Ž. Kesić, D. Skala, Chem. Eng. Technol. 37 (2014) 1

H.P. Zhao, C.S. Ye,Z.T. Fan, J. Eur. Ceram Soc. 34 (2014) 1457

S.M. Dobosz, P. Jelinek, K. Major-Gabrys, China Foundry 8 (2011) 438

Y.S. Zhang, Y.Y. Xue, J. Huang, S.N. Li, L. Xia, C.H. Huang, J. Wuhan Univ. Technol.24 (2009) 5

T. Tomita, S. Kawasaki, T Nagaoka, K. Sato, K. Watari, J. Ceram. Soc. Jpn. 116 (2008) 224

L. Izdebska-Szanda, A. Balinski, M. Angrecki,A. Palma, Arch. Metall. Mater. 59 (2014) 1033

A. Rabbii, Iran Polym. J. 10 (2001) 229

F. Guo, Z.G. Peng, J.Y. Dai,Z.L. Xiu, Fuel Process. Technol. 91 (2010) 322

F. Guo, N.N. Wei, Z.L. Xiu, Z. Fang, Fuel 93 (2012) 468

M.A. Portnoff, D.A. Purta, M.A. Nasta, J. Zhang,F. Pourarian, PCT No. WO2006/002087, Jan 5, 2006

Y.-D. Long, F. Guo, Z. Fang, X.-F. Tian, L.-Q. Jiang, F. Zhang, Bioresour. Technol. 102 (2011) 6884

M.O. Daramola, D. Nkazi, K. Mtshali, Int. J. Renew. Energ. Res. 5 (2015) 517

Y.-D. Long, Z. Fang, T.-C. Su, Q. Yang, Appl. Energ. 113 (2014) 1819

X. Gui, S. Chen, Z. Yun, Chin. J. Chem. Eng. 24 (2016) 499

I. Lukić, Ž. Kesić, S. Maksimović, M. Zdujić, H. Liu, J. Krstić, D. Skala, Fuel 113 (2013) 367

M.R. Miladinović, J.B. Krstić, M.B. Tasić, O.S. Stamenković,V.B. Veljković, Chem. Eng. Res. Des. 92 (2014) 1740

L. Zhao, Z. Qiu, S.M. Stagg-Williams, Fuel Process Technol. 114 (2013) 154

D. Kumar, A. Ali, EnergyFuels 27 (2013) 3758

O. Ilgen, A.N. Akin, Appl. Catal., B 126 (2012) 342

A. Chantrasa, N. Phlernjai, J.G. GoodwinJr, Chem. Eng. J. 168 (2011) 333

V.V. Bokade, G.D. Yadav, Ind. Eng. Chem. Res. 48 (2009) 9408

Q. Shu, J. Gao, Y. Liao, J. Wang, Chin. J. Chem. Eng. 19 (2011) 163

M.R. Miladinović, M.B. Tasić, O.S. Stamenković, V.B. Veljković, D.U. Skala, Chem. Ind. Chem. Eng. Q. 22 (2016) 137

M.B. Tasić, M.R. Miladinović, O.S. Stamenković, V.B. Veljković, D.U. Skala, Chem. Eng. Technol. 38 (2015) 1550

S. Nasreen, H. Liu, I. Lukic, L. Qurashi, D. Skala, Chem. Ind. Chem. Eng. Q. 22 (2016) 419

L. Hui, Z. Yanan, Patent CN105536775 A, 2016

S. Glisic,A. Orlovic, J. Supercrit. Fluid. 65 (2012) 61

S. Nasreen, H. Liu, L. Ali Qureshi, Z. Sissou, I. Lukic,D. Skala, Fuel Process. Technol. 148 (2016) 76

L. Biernacki, S. Pokrzywnicki, J. Therm. Anal. Calorim. 55 (1999) 227

I.K. Battisha, A. El Beyally, S. Abd El Mongy, A.M. Nahrawi, J. Sol-Gel Sci. Techn. 41 (2007) 129

T. Witoon, N. Tatan, P. Rattanavichian, M. Chareonpanich, Ceram. Int. 37 (2011) 2297

X.C. Duan, J.B. Lian, J.M. Ma, T. Kim, W.Z. Zheng, Cryst. Growth Des. 10 (2010) 4449

I. Lukic, J. Krstic, D. Jovanovic, D. Skala, Bioresour. Technol. 100 (2009) 4690.



  • There are currently no refbacks.

Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)