Modeling of pure components high pressures densities using CK-SAFT and PC-SAFT equations

Jovana Ilić Pajić, Mirko Stijepovic, Gorica Ivaniš, Ivona Radović, Jasna Stajić-Trošić, Mirjana Kijevčanin

Abstract


SAFT equations of state have been widely used for the determination of different thermo-physical and phase equilibria properties. In order to be used as predictive models it is necessary to calculate model parameters. In this work CK-SAFT and PC-SAFT equations of state were applied for the correlation of  pure compounds densities in the wide ranges of temperature and pressure (288.15-413.15 K and 0.1-60 MPa, respectively). Calculation of densities for n–hexane, n–heptane, n–octane, toluene, dichloromethane and ethanol under high pressure conditions were performed with the new sets of parameters determined in this paper by CK-SAFT and PC-SAFT. Very good agreement between experimental and calculated density values was achieved, having absolute average percentage deviations lower than 0.5%.


Keywords


density; modelling; non-associative compounds; CK-SAFT; PC-SAFT.

Full Text:

PDF (1,362 kB)

References


G. M. Kontogeorgis, G. K. Folas, Thermodynamic Models for Industrial Applications: From Classical and Advanced Mixing Rules to Association Theories, John Wiley & Sons, Wiltshire, 2010

I. Senol, WASET 5 (11) (2011) 926

L. Hong-Yi, L. Guojie, Fluid Phase Equilibr. 108 (1995) 15

S. S. Mansouri, A. Farsi, V. Shadravan, S. Ghader, J. Mol. Liq. 160 (2011) 94

G. R. Ivaniš, A. Ž. Tasić, I. R. Radović, B. D. Djordjević, S. P. Šerbanović, M. Lj. Kijevčanin, J. Serb. Chem. Soc. 80 (2015) 1073

N. I. Diamantonis, G. C. Boulougouris, E. Mansoor, D. M. Tsangaris, I. G. Economou, Ind. Eng. Chem. Res. 52 (2013) 3933

P. Ji, W. Feng,, T. Tan, J. Chem. Eng. Data 52 (2007) 135

J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40 (2001) 1244

M. S. Wertheim, J. Stat. Phys. 35 (1984) 19

M. S. Wertheim, J. Stat. Phys. 35 (1984) 35

M. S. Wertheim, J. Stat. Phys. 42 (1986) 459

M. S. Wertheim, J. Stat. Phys. 42 (1986) 477

C. McCabe, S. B. Kiselev, Ind. Eng. Chem. Res. 43 (2004) 2839

S. H. Huang, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 2284

S. S. Chen, A. Kreglewski, Ber. Bunsen-Ges. Phys. Chem. 81 (1977) 1048

W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29 (1990) 1709

N. Pedrosa, L. F. Vega, J. A. P. Coutinho, I. M. Marrucho, Macromolecules 39 (2006) 4240

Y-H. Fu, S. I. Sandler, Ind. Eng. Chem. Res. 34 (1995) 1897

T. Kraska, K. E. Gubbins, Ind. Eng. Chem. Res. 35 (1996) 4727

T. Kraska, K. E. Gubbins, Ind. Eng. Chem. Res. 35 (1996) 4738

A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, J. Chem. Phys. 106 (1997) 4168

C. McCabe, A. Gil-Villegas, G. Jackson, Chem. Phys. Lett. 303 (1999) 27

A. Tihic, G. M. Kontogeorgis, N. von Solms, M. L. Michelsen, Fluid Phase Equilibr. 248 (2006) 29

A. A. Abdussalam, G. R. Ivaniš, I. R. Radović, M. Lj. Kijevčanin, J. Chem. Thermodyn. 100 (2016) 89

N. F. Carnahan, K. E. Starling, J. Chem. Phys. 51 (1969) 635

N. I. Diamantonis, I. G. Economou, Energy Fuels 25 (2011) 3334

B. J. Alder, A. D. Young, M. A. Mark, J. Chem Phys. 56 (1972) 3013

P. Englezos, N. Kalogerakis, Applied parameter estimation for chemical engineers, Taylor & Francis Group, LLC, New York, 2001

S. M. Walas, Phase Equilibria in Chemical Engineering, Butterworth-Heinemann, Boston, MA, 1985

A. Constantinides, N. Mostoufi, Numerical methods for chemical engineers with Matlab applications, Prentice Hall PTR, Upper Saddle River, NJ, 2000

G. R. Ivaniš, A. Ž. Tasić, I. R. Radović, B. D. Djordjević, S. P. Šerbanović, M. Lj. Kijevčanin, J. Serb. Chem. Soc. 80 (2015) 1423.




DOI: http://dx.doi.org/10.2298/JSC170613096P

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)