Removal of lithium from water by aminomethylphosphonic acid containing resin

Aydın Çiçek, Onur Yılmaz, Ozgur Arar

Abstract


This study gives an overview of the ability of aminomethylphosphonic acid containing chelating resin for the removal of lithium (Li+) from water. Studies were performed under various conditions such as resin dose, initial Li+ concentration, solution pH and solution temperature. Results showed that the sorption of Li+ reached equilibrium within 15 min and the experimental data were well fitted by the pseudo-second-order kinetic model. The Li+ sorption was highly pH dependent, and the optimum pH for Li+ removal was ≥3. Isotherm sorption data displayed good correlation with the Langmuir model, and maximum monolayer sorption capacity of resin found as 13.65 mg/g. Thermodynamic studies suggested that Li+ sorption onto chelating resin was an exothermic and spontaneous process in nature. Resin can be regenerated by 0.1 M HCl, NaCl or H2SO4 with > 99 % efficiency. Desorption of Li+ with 0.1 M NaCl resulted in no changes of the uptake capacity through four subsequent sorption/desorption cycles.


Keywords


chelating resin; ion exchange; lithium; lewatit TP260

Full Text:

PDF (1,132 kB)

References


P. Meshram, B. D. Pandey, T. R. Mankhand, Hydrometallurgy 150 (2014) 192

H. Aral, A. Vecchio-Sadus, Ecotoxicol. Environ. Saf. 70 (2008) 349

B. Swain, Sep. Purif. Technol. 172 (2017) 388

L. Wang, C. G. Meng, W. Ma, Colloids Surfaces A Physicochem. Eng. Asp. 334 (2009) 34

Y. Miyai, K. Ooi, S. Katoh, Sep. Sci. Technol. 23 (1988) 179

H. H. Ussing, P. Kruhoffer, H. J. Thaysen, N. H. Thorn, The Alkali Metal Ions in Biology: I. The Alkali Metal Ions in Isolated Systems and Tissues. II. The Alkali Metal Ions in the Organism, 2013

W. G. Berl, Physical Methods in Chemical Analysis, 1961.

G. Coşkun, İ. Şimşek, Ö. Arar, Ü. Yüksel, M. Yüksel, Desalin. Water Treat. 57 (2016) 25739

E. Özbunar, S. Kırca, Ö. Arar, Ü. Yüksel, Anal. Lett. 50 (2017) 1657–1668.

R. L. Lundblad, F. M. Macdonald, Handbook of Biochemistry and Molecular Biology, 2010

B. Alyüz, S. Veli, J. Hazard. Mater. 167 (2009) 482–488.

S. Deniz, N. Taşci, E. Yetimoğlu, M. Kahraman, J. Serbian Chem. Soc. 82 (2017) 215

J. Milovanović, S. Eich-Greatorex, T. Krogstad, V. Rakić, N. Rajić, J. Serbian Chem. Soc. 80 (2015) 1203

R. M. Alosmanov, J. Serbian Chem. Soc. 81 (2016) 907

A. Altinisik, Y. Seki, S. Ertas, E. Akar, E. Bozacı, Y. Seki, Fibers Polym. 16 (2015) 370

A. A. Zagorodni, Ion Exchange Materials: Properties and Applications, 2007

Y. S. Ho, J. Hazard. Mater. 136 (2006) 681

Y. S. Ho, G. McKay, Process Biochem. 34 (1999) 451

Y. Aşçi, Ş. Kaya, Desalin. Water Treat. 52 (2014) 267

Z. Aksu, Process Biochem. 38 (2002) 89

Ö. Arar, Anadolu Univ. J. Sci. Technol. Appl. Sci. Eng. 17 (2016) 530

R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res. 40 (2001) 2054

X. Luo, B. Guo, J. Luo, F. Deng, S. Zhang, S. Luo, J. Crittenden, ACS Sustain. Chem. Eng. 3 (2015) 460

S. Zandevakili, M. Ranjbar, M. Ehteshamzadeh, Hydrometallurgy 149 (2014) 148

K. S. Chung, J. C. Lee, E. J. Kim, K. C. Lee, Y. S. Kim, K. Ooi, Mater. Sci. Forum 449–452 (2004) 277

T. Ryu, J. Shin, J. Ryu, I. Park, H. Hong, B.-G. Kim, K.-S. Chung, Mater. Trans. 54 (2013) 1029

Y. K. Recepoğlu, N. Kabay, İ. Yılmaz-Ipek, M. Arda, K. Yoshizuka, S. Nishihama, M. Yüksel, Solvent Extr. Ion Exch. 6299 (2017) 1.




DOI: http://dx.doi.org/10.2298/JSC170930020C

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)