Effect of organic substances on iron-release kinetics in a calcareous soil after basil harvesting

Sedigheh Safarzadeh, Leila Sadegh Kasmaei, Zahra Ahmad Abadi

Abstract


Desorption of iron (Fe) from soil is important to evaluating the availability and toxicity of soil Fe in agriculture. The aim of this investigation was to study the effect of organic substances (cow and sheep manures and vermicompost) on Fe release from a calcareous soil and determine the best models for description of the Fe desorption kinetics. Organic substances were added to soils at the rate of 3%. Basil (Ocimum Basilicum L.) seeds were sown in each pot and pots were kept at 24–25°C at about field capacity for 90 days. After 90 days, plants were harvested and soil samples were used for Fe desorption analysis. Seven kinetic models were evaluated to describe the rate of Fe desorption in soil extracted with DTPA. Results showed that Fe release from soil samples increased with time. Release of Fe was rapid at first and then became slower. Iron release in organic substances treatments was higher than unamended soil and two-constant rate, parabolic diffusion and simple Elovich models were the best equations for description of Fe release from soils.


Keywords


desorption; manure; vermicompost; kinetics, calcareous soil

Full Text:

PDF (1,462 kB)

References


A. Bermond, G. Varrault, V. Sappin-Didier, M. Mench, Plant and soil. 275 (2005) 21

M. McBride, S. Sauve, W. Hendershot, Europ. J. Soil Sci. 48 (1997) 337

M. Mench, D. Baize, B. Mocquot, Environmental pollution. 95 (1997) 93

A.Voegelin, K. Barmettler, R. Kretzschmar, J. Environ. Qual. 32 (2003). 865

D.L. Sparks, Environmental soil chemistry. Academic Press, San Diego, CA, 2003, p. 207-228

G. Sposito, The Chemistry of Soils, Oxford Univ Press, Madison, WI, 2008, p. 195-218

H. Shariatmadari, M. Shirvani, A. Jafari, Geoderma. 132 (2006) 261

P. Del Castilho, W. Chardon, W. Salomons, J. Environ. Qual. 22 (1993) 689

N. Barrow, Europ. J. Soil Sci. 30 (1979) 259

S. Kuo, E. Lotse, Soil Sci. 116 (1973) 400

J. Yu, D. Klarup, Water. Air. Soil Pollut. 75 (1994) 205

H. Motaghian, A. Hosseinpur, J. soil sci. plant nutr. 13 (2013) 664

A. Reyhanitabar, N. Karimian, Am. Eur J Agric Environ Sci. 4 (2008) 287

M. Jalali, S. Moharami, Commun. Soil Sci. Plant Anal. 44 (2013) 3365

H. Motaghian, A. Hosseinpur, Environ Earth Sci. 71 (2014) 965

H. Motaghian, A. Hosseinpur, Commun Soil Sci Plant Anal. 48 (2017) 2126

G. W. Gee, J. W. Bauder, in Methods of soil analysis, D. L. Sparks et al, (eds) American Society of Agronomy, Inc, Madison, WI, 1986, P, 383

G. Thomas, in Methods of Soil Analysis, D. L. Sparks et al, (eds) American Society of Agronomy, Inc, Madison, WI, 1996, p. 475

J. Rhoades, in Methods of Soil Analysis, D. L. Sparks et al, (eds) American Society of Agronomy, Inc, Madison, WI, 1996, p. 417

R. H. Loppert, D. L. in Methods of Soil Analysis. D. L. Sparks et al, (eds) American Society of Agronomy, Inc, Madison, WI, 1996, p. 437

F. S. Watanabe, and S. R. Olsen. Soil Sci. Soc. Am. Proc. 29 (1965) 677

W. L. Lindsay, W. A. Norvell. Soil Sci. Soc. Am. J. 42 (1978) 421

H. D. Chapman, D. F. Pratt. Methods of analysis for soil, plant, and water. Univ. Calif., Div. Agric. Sci, 1961. p. 1-60

S.H. Chien, W.R. Clayton Soil Sci. Soc. Am. J. 44 (1980) 265

R. G. D. Steel, J. H. Torrie, Principles and procedures of statistics (With special Reference to the Biological Sciences.) Mc. Graw-Hill, New York, 1960, p. 251-481

Y. P. Dang, D. G. Dalal, D.G. Edwards, K.G. Tiller, Soil Sci. Soc. Am. J. 58 (1994) 1392

A. Karaca, Geoderma. 122 (2004) 297

L. M. Shuman, Soil Sci. Am. Proc. 39 (1975) 454

B. Mandal, G. C. Hazra, Soil Sci.162 (1997) 713

M. A. E. Ramadan, A. M. El-Bassiony, A. M. Hoda, Aust. J. Basic. Appl. Sci. 2 (2008) 288

L. Sadegh Kasmaei, M. Fekri, Commun. Soil Sci. Plan. Anal. 43 (2012) 2209

F.J. Stevenson, A. Fitch, in Copper in soils and plants, J. F. Loneragan et al (eds). Academic, Sydney, Australia, 1981, p. 69

Y. X. Chen, Q. Lin, Y. M. Luo, Y. F. He, S. J. Zhen, Y. L. Yu, G. M. Tian, M. H. Wong, Chemosphere. 50 (2003) 807

E. J. M. Temminghoff, S. E. A. T. Van Der Zee, F. A. M. Dehaan, Eur. J. Soil. Sci. 49 (1998) 617

A. K. M. Arnesen, B. R. Singh, Can. J. Soil Sci. 78 (1999) 531

S. C. Geiger, R. H. Loeppert, J. Plant Nutr. 9 (1986) 229

A. H. Khater, A. M. Zaghloul, in proceeding of 17th World Conference on Soil Science, (2002), Bangkok, Thailand, Copper and zinc desorption kinetics from soil: effect of pH, 2002, p. 1-9

A. Pavlatou, N. A. Polyzopoulos, J. Soil Sci. 39 (1988) 425

E. Allen, L. Hossner, D. Ming, D. Henninger, Soil Sci. Soc. Am. J. 59 (1995) 248

J. L. Havlin, D. G. Westfall, S. R. Olsen, Soil Sci. Soc. Am. J. 49 (1985) 371

G. Kandpal, P. C. Srivastava, B. Ram, Water. Air. Soil. Pollu. 161 (2005) 353

M. J. D. Low, Chem. Rev. 60 (1960) 267

R. J. Atkinson, F. J. Hingston, A. M. Posner, J. P. Quirk, Nature. 226 (1970) 148.




DOI: http://dx.doi.org/10.2298/JSC171115019S

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 J. Serb. Chem. Soc.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

IMPACT FACTOR 0.822 (131 of 166 journals)
5 Year Impact Factor 1.015 (118 of 166 journals)