Chemical composition and distribution of the headspace volatiles in commercial culinary herbs and spices: Chemometric approach

Authors

  • Olga P. Jovanović Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš
  • Zorica S. Mitić Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš
  • Goran M. Petrović Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš
  • Gordana S. Stojanović Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš

DOI:

https://doi.org/10.2298/JSC191121007J

Keywords:

chemical composition, spice, herbs, HS-GC–MS/FID, principal component analysis

Abstract

Fast determination of the volatile com­ponents of widely used culi­nary herbs and spices, without prior preparation of the sample, using headspace sampling (HS) and GC–MS/FID analysis, is presented. Generally, monoter­penes were the dominant class in HS volatiles (HSV): monoterpene hydro­car­bons in dill, celery, parsnip and parsley, and oxygenated monoterpenes in cori­ander, bay laurel and rosemary. The HSV of ginger and clove samples differed from the others due to their high content of sesquiterpene hydrocarbons and phenylpropanoids, respectively. The most extreme case of limited distribution was related to the samples of garlic-HSV comprised organosulfur compounds and none of the above mentioned classes. Furthermore, the HSV data were processed via principal component analysis, making visible the variability and tendency between the investigated samples. Lastly, the research provides insights in many HS profiles of culinary herbs and spices, giving relative repre­sentation of volatiles as well as differences and deviation in terms of HSV content.

References

D. Gottardi, D. Bukvicki, S. Prasad, A.K. Tyagi, Front. Microbiol. 7 (2016) 1394 (https://doi.org/10.3389/fmicb.2016.01394)

V. A. Parthasarathy, B. Chempakam, T. J. Zachariah, in Chemistry of Spices, V.A. Parthasarathy, B. Chempakam, T.J. Zachariah, Eds.,: CAB International, Oxfordshire, 2008, pp. 1–21 (ISBN-13: 978 1 84593 405 7)

T. J. Zachariah, N. K. Leela, in Handbook of Herbs and Spices, K.V. Peter, Ed., Woodhead Publishing Limite, Cambridge, 2006. p. 177 (ISBN-13: 978-1-84569-017-5)

M.C. Díaz-Maroto, M. S. Pérez-Coello, M. D. Cabezudo, Chromatographia 55 (2002) 723 (https://doi.org/10.1007/BF02491788)

I. Cvetkovikj, G. Stefkov, J. Acevska, M. Karapandžova, A. Dimitrovska, S. Kulevanova, Food Chem. 202 (2016)133 (https://doi.org/10.1016/j.foodchem.2016.01.141)

N. C. Da Costa, S. Eri, in Chemistry and Technology of Flavors and Fragrances, D. J. Rowe, Ed., Blackwell Publishing Ltd., Oxford, 2005 p. 12 (https://doi.org/10.1002/9781444305517)

G. Stojanović, O. Jovanović, G. Petrović, V. Mitić, V. Stankov Jovanović, S. Jovanović, Natural Prod. Commun. 9 (2014) 1609 (https://journals.sagepub.com/doi/pdf/10.1177/1934578X1400901120)

S. Jovanović, O. Jovanović, G. Petrović, G. Stojanović, Natural Prod. Commun. 10 (2015) 661 (https://doi.org/10.1177/1934578X1501000434)

S. Jovanović, O. Jovanović, Z. Mitić, T. Golubović, B. Zlatković, G. Stojanović, Flavour Fragr. J. 32 (2017) 446 (https://doi.org/10.1002/ffj.3401)

NIST Chemistry WebBook, Nist Standard Reference database, NIST – National Institute of Standards and Technology (June 24, 2018), available from: http://webbook.nist.gov/chemistry/

R. P. Adams, Identification of essential oil components by gas chromatography/mass spectroscopy, Allured Publishing Corporation, Carol Stream, IL, 2007, pp.1–809 (ISBN 978-1-932633-21-4).

Published

2020-08-25

How to Cite

[1]
O. P. Jovanović, Z. S. Mitić, G. M. Petrović, and G. S. Stojanović, “Chemical composition and distribution of the headspace volatiles in commercial culinary herbs and spices: Chemometric approach”, J. Serb. Chem. Soc., vol. 85, no. 8, pp. 1001-1010, Aug. 2020.

Issue

Section

Biochemistry & Biotechnology

Most read articles by the same author(s)