Density functional theory calculation of propane cracking mechanism over chromium (III) oxide by cluster approach

Authors

DOI:

https://doi.org/10.2298/JSC200521044O

Keywords:

olefins, rate-determining step, scission, first principle, coking, catalyst deactivation

Abstract

The catalyst coking and production of undesired products during the transformation of propane into propylene has been the critical challenge in the on purpose approach of propylene production. The mechanism contributing to this challenge was theoretically investigated through the analysis of cracking reaction routes. The study carried out employed the use of a DFT and cluster approach in order to understand the reactions that promote cooking of the cat­alyst and in the search for the kinetic and thermodynamic data of the reaction mechanism involved in the process over Cr2O3. The RDS and feasible route that easily promote the production of small hydrocarbons like ethylene, meth­ane, and many others were identified. The study suggests Cr-site substitution or co-feeding of oxygen, as a way that aids in preventing deep dehydrogenation in the conversion of propane to propylene. This information will help in imp­ro­ving the Cr2O3 catalyst perfor­mance and further increase the production yield.

Author Biographies

Toyese Oyegoke, Chemical Engineering Department, Faculty of Engineering, ABU Zaria, Nigeria and 2Laboratoire de Chimie, ENS Lyon, l’Universite de Lyon, 69007, Lyon, France

Lecturer & Research Scholar (Computational Catalysis, Modeling & Simulations)

Fadimatu Nyako Dabai, Chemical Engineering Department, Faculty of Engineering, ABU Zaria, Nigeria

Lecturer & Research Scholar (Catalysis & Reaction Engineering)

Baba El-Yakubu Jibril, Chemical Engineering Department, Faculty of Engineering, ABU Zaria, Nigeria

Professor of Catalysis & Reaction Engineering

References

S. Asadi, L. Vafi, R. Karimzadeh, Micropor. Mesopor. Mat. 255 (2018) 253 (https://dx.doi.org/10.1016/j.micromeso.2017.07.018)

H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, Industrial Organic Chemicals, John Wiley & Sons, Hoboken, FL, 2000, p. 211 (https://dx.doi.org/10.1002/0471651540)

S. Budavari, Propylene - The Merck Index, Merck & Co., Kenilworth, NJ, 1996, p. 1

Y. Ren, F. Zhang, W. Hua, Y. Yue, Z. Gao, Catal. Today 148 (2009) 3 (https://dx.doi.org/10.1016/j.micromeso.2017.07.018)

J. C. Philip, Survey of Industrial Chemistry, Springer, Berlin, 2001, p. 2

L. Yan, Z. H. Li, J. Lu, K. N. Fan, J. Phys. Chem., C 112 (2008) 51 (https://dx.doi.org/10.1021/jp807864z)

Y. Ming-Lei, Y. A. Zhu, X. G. Zhou, Z. J. Sui, D. Chen, ACS Catal. 2 (2012) 1247 (https://dx.doi.org/10.1021/cs300031d)

N. Lauri, H. Karoliina, ACS Catal. 3 (2013) 3026 (https://dx.doi.org/10.1021/cs400566y)

H. Timothy, Computational study of the catalytic dehydrogenation of propane on Pt and Pt3Ga catalyst, Ghent University, Ghent, 2015, p. 15

S. Saerens, M. K. Sabbe, V. V. Galvita, E. A. Redekop, M.-F. Reyniers, G. B. Marin, ACS Catal. 7 (2017) 7495 (https://dx.doi.org/10.1021/acscatal.7b01584)

T. Oyegoke, F. N. Dabai, A. Uzairu, B. Jibril, B. J. Pure Appl. Sci. 11 (2018) 178 (https://dx.doi.org/10.4314/bajopas.v11i1.29S)

J. Zhang, Z. R-Jia, C. Q-Yu, S. Z-Jun, Z. X-Gui, Z. Y-An, Cat. Today (2020), in press (https://dx.doi.org/10.1016/j.cattod.2020.02.023)

E. Araujo-Lopez, L. Joos, B. D. Vandegehuchte, D. I. Sharapa, F. Studt, The J. of Phys. Chem. C 124 (2020) 3171 (https://dx.doi.org/10.1021/acs.jpcc.9b11424)

Y. Xie, R. Luo, G. Sun, S. Chen, Z. J. Zhao, R. Mu, RSC Chem. Sci. 11 (2020) 3845 (https://dx.doi.org/10.1039/C8CY00564H)

J. H. Warren, A guide to molecular mechanics and quantum chemical calculations, Wavefunction, Irvine, CA, 2003, p. 89

P. Brown, J. Forsyth, E. Lelievre-Berna, F. Tasset, J. Phys.: Condens. Matter 14 (2002) 1957 (https://dx.doi.org/10.1088/0953-8984/14/8/323)

W. Yanbiao, G. Xinxin, W. Jinla, Phys. Chem. Chem. Phys. 12 (2010) 2471 (https://dx.doi.org/10.1039/B920033A)

C. Compere, D. Costa, L. Jolly, E. Mauger, C. Gessner–Prettre, New J. Chem. 24 (2000) 993 (https://dx.doi.org/10.1039/B005313I)

S. Veliah, K. Xiang, R. Pandey, J. Recio, J. Newsam, J. Phys. Chem., B 102 (1997) 1126 (https://dx.doi.org/10.1021/jp972546m)

T. Oyegoke, F. N. Dabai, A. Uzairu, B. Y. Jibril, Eur. J. Mat. Sci. Eng. 5 (2020) 173 (https://dx.doi.org/10.36868/ejmse.2020.05.04.173)

N. M. Laurendeau, Statistical Thermodynamics: Fundamentals and Applications, Cambridge University Press, Cambridge, 2005

I. Kennedy, H. Geering, M. Rose, A. Crossan, Entropy 21 (2019) 454 (https://dx.doi.org/10.3390/e21050454)

T. L. Hill, An Introduction to Statistical Thermodynamics, Dover Publications Inc., New York, 1960

C. T. Campbell, L. H. Sprowl, L. Árnadóttir, J. Phys. Chem. 120 (2016) 10283 (https://dx.doi.org/10.1021/acs.jpcc.6b00975)

A. Savara, J. Phys. Chem., C 117 (2013) 15710 (https://dx.doi.org/10.1021/jp404398z)

L. H. Sprowl, C. T. Campbell, L. Arnadottir, J. Phys. Chem., C 121 (2017) 17 (https://dx.doi.org/10.1021/acs.jpcc.7b03318)

L. H. Sprowl, C. T. Campbell, L. Arnadottir, J. Phys. Chem., C 120 (2016) 9719 (https://dx.doi.org/10.1021/acs.jpcc.5b11616)

B. Y. Jibril, Appl. Catal., A 264 (2004) 193 (https://dx.doi.org/10.1021/ie000285o)

D. Yu-Jue, Z. H. Li, K. N. Fan, J. Mol. Catal., A 379 (2013) 122 (https://dx.doi.org/10.1016/j.molcata.2013.08.011)

P. Wang, S. N. Steinmann, G. Fu, C. Michel, P. Sautet ACS Catal. 7 (2017) 1955 (https://dx.doi.org/10.1021/acscatal.6b03544)

F. Maldonado, A. Stashans, Surface Rev. Lett. 23 (2016) 1650037 (https://dx.doi.org/10.1142/S0218625X16500372)

Z. J. Zhao, T. Wu, C. Xiong, G. Sun, R. Mu, L. Zeng, J. Gong, Angew. Chem. Int. Ed. 57 (2018) 6791 (https://dx.doi.org/10.1002/anie.201800123).

Graphical Abstract

Published

2021-03-22

How to Cite

[1]
T. Oyegoke, F. N. Dabai, A. Uzairu, and B. E.-Y. Jibril, “Density functional theory calculation of propane cracking mechanism over chromium (III) oxide by cluster approach”, J. Serb. Chem. Soc., vol. 86, no. 3, pp. 283-297, Mar. 2021.

Issue

Section

Theoretical Chemistry