Role of EDTA capped cobalt oxide nanomaterial in photocatalytic degradation of dyes

Authors

  • Meena Singh Department of Applied Science, The NorthCap University, Sector 23A, Gurugram-122017, India
  • Dipti Vaya Department of Chemistry, Amity School of Applied Sciences, Amity University Haryana, Gurugram-122413, India https://orcid.org/0000-0002-1314-2142
  • Ravi Kumar Department of Chemistry, NIT, Srinagar, Jammu and Kasmir-190006, India https://orcid.org/0000-0002-5048-7860
  • Bijoy Das Department of Applied Science, The NorthCap University, Sector 23A, Gurugram-122017, India https://orcid.org/0000-0001-7427-4803

DOI:

https://doi.org/10.2298/JSC200711074S

Keywords:

photocatalytic activity, crystal violet, malachite green, adsorption isotherm

Abstract

Dyes released from textile, paint, and various other industries in wastewater have posed long term environmental damage. Functional nano­mat­erials provide a hope and opportunities to treat these effluent wastes in a rapid and efficient way due to their large surface area to volume ratios. Synthesis of 2,2',2'',2'''-(ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA) cap­ped cobalt oxide nanomaterial, as a photocatalyst, has been investigated and used for the rapid and efficient removal of malachite green (MG) and crystal violet (CV) dyes. The morphological, structural, optical, chemical and thermal properties of the synthesized nanomaterial were analysed using different characterization tools such as scanning electron microscopy, transmis­sion electron microscopy, X-ray diffraction, ultra violet–visible and Fourier transform infrared (FT-IR) spectroscopy and thermo­gra­vimetric analysis. The prepared EDTA capped cobalt oxide nanomaterials display better photocatalytic degradation, 56.3 % for MG and 37.9 % for CV in comparison to the pure cobalt oxide, 47.7 and 27.6 %, respectively, under visible light illumination. The kinetics of the deg­radation followed the pseudo-first order and it corresponds to Freundlich ads­orption isotherm model. The incremental photodegradation of these two dyes was attributed by mor­phology of the nanomaterial which favour effective elec­tron/hole separation.

References

J. H. Huang, K. L. Huang, S. Q. Liu, A. T. Wang, C. Yan, Colloids Surfaces, A 330 (2008) 55 (https://doi.org/10.1016/j.colsurfa.2008.07.050)

R. Kabbout, S. Taha, Phys. Proc. 55 (2014) 437 (https://doi.org/10.1016/j.phpro.2014.07.063)

M. B. Kasiri, N. Modirshahla, H. Mansouri, Int. J. Ind. Chem. 4 (2013) 3 (https://doi.org/10.1186/2228-5547-4-3)

L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D. K. Dutta, P. Sengupta, Appl. Catal., A 490 (2015) 42 (https://doi.org/10.1016/j.apcata.2014.10.053)

M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemannt, Chem. Rev. 95 (1995) 69 (https://doi.org/10.1021/cr00033a004)

C. Hariharan, Appl. Catal., A 304 (2006) 55 (https://doi.org/10.1016/j.apcata.2006.02.020)

E. A. Meulenkamp, J. Phys. Chem., B 102 (1998) 5566 (https://doi.org/10.1021/jp980730h)

K. S. Babu, A. R. Reddy, K. V. Reddy, Mater. Res. Bull. 49 (2014) 537 (https://doi.org/10.1016/j.materresbull.2013.09.024)

K. Sinkó, G. Szabó, M. Zrínyi, J. Nanosci. Nanotechnol. 11 (2011) 4127 (https://doi.org/10.1166/jnn.2011.3875)

S. Farhadi, J. Safabakhsh, P. Zaringhadam, J. Nanostruct. Chem. 3 (2013) 69 (https://doi.org/10.1186/2193-8865-3-69)

R. K. Gupta, A. K. Sinha, B. N. Raja Sekhar, A. K. Srivastava, G. Singh, S. K. Deb, Appl. Phys., A 103 (2011) 13(https://doi.org/10.1007/s00339-011-6311-6)

R. Edla, N. Patela, M. Orlandi, N. Bazzanella, V. Bello, C. Maurizio, G. Mattei, P. Mazzoldi, A. Miotello, Appl. Catal., B 166–167 (2015) 475 (https://doi.org/10.1016/j.apcatb.2014.11.060)

W. Wen, J. M. Wu, J. P. Tu, J. Alloys Compd. 513 (2012) 592 (https://doi.org/10.1016/j.jallcom.2011.11.019)

S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 10 (2009) 013001 (https://doi.org/10.1088/1468-6996/10/1/013001)

H. N. Azlina, J. N. Hasnidawani, H. Norita, S. N. Surip, Acta Phys. Pol., A 129 (2016) 842 (https://doi.org/10.12693/APhysPolA.129.842)

E. G. Goh, X. Xu, P. G. McCormick, Scr. Mater. 78–79 (2014) 49 (https://doi.org/10.1016/j.scriptamat.2014.01.033)

P. Chandrasekaran, G. Viruthagiri, N. Srinivasan, J. Alloys Compd. 540 (2012) 89 (https://doi.org/10.1016/j.jallcom.2012.06.032)

K. P. Singh, S. Gupta, A. K. Singh, S. Sinha, J. Hazard. Mater. 186 (2011) 1462 (https://doi.org/10.1016/j.jhazmat.2010.12.032)

W. Cheng, S. Wang, L. Lu, W. Gong, X. Liu, B. Gao, H. Zhang, Biochem. Eng. J. 39 (2008) 538 (https://doi.org/10.1016/j.bej.2007.10.016)

O. J. Hao, H. Kim, P. C. Chiang, Crit. Rev. Environ. Sci. Technol. 30 (2000) 449 (https://doi.org/10.1080/10643380091184237)

S. Li, Bioresour. Technol. 101 (2010) 2197 (https://doi.org/10.1016/j.biortech.2009.11.044)

K. V. K. Rao, Toxicol. Lett. 81 (1995) 107 (https://doi.org/10.1016/0378-4274(95)03413-7)

M. Saquib, M. Muneer, Dyes Pigments 56 (2003) 37.(https://doi.org/10.1016/S0143-7208(02)00024-4)

S. Ameen, M. S. Akhtar, M. Nazim, H. S. Shin, Mater. Lett. 96 (2013) 228 (https://doi.org/10.1016/j.matlet.2013.01.034)

L. Wang, B. Liu, S. Ran, H. Huang, X. Wang, B. Liang, D. Chen, G. Shen, J. Mater. Chem. 22 (2012) 23541 (https://doi.org/10.1039/c2jm35617a)

L. Man, B. Niu, H. Xu, B. Cao, J. Wang, Mater. Res. Bull. 46 (2011) 1097 (https://doi.org/10.1016/j.materresbull.2011.02.045)

S. Vijayakumar, A. Kiruthika Ponnalagi, S. Nagamuthu, G. Muralidharan, Electrochim. Acta 106 (2013) 500 (https://doi.org/10.1016/j.electacta.2013.05.121)

S. Bazgir, S. Farhadi, Int. J. Nanodimension 8 (2017) 284 (http://www.ijnd.ir/article_656340.html)

X. Zhao, Z. Pang, M. Wu, X. Liu, H. Zhang, Y. Ma, Z. Sun, L. Zhang, X. Chen, Mater. Res. Bull. 48 (2013) 92 (https://doi.org/10.1016/j.materresbull.2012.10.001)

S. Farhadi, G. Nadri, M. Javanmard, Int. J. Nanodimension 7 (2016) 201 (http://www.ijnd.ir/article_649420.html)

T. Umamath, J. A. Selvi, S. A. Kanimozhi, S. Rajendran, A. J. Amalraj, Ind. J. Chem. Technol. 15 (2008) 560 (http://nopr.niscair.res.in/handle/123456789/2870)

R. Y. Hong, T. T. Pan, H. Z. Li, J. Magn. Magn. Mater. 303 (2006) 60 (https://doi.org/10.1016/j.jmmm.2005.10.230)

R. Hong, T. Pan, J. Qian, H. Li, Chem. Eng. J. 119 (2006) 71 (https://doi.org/10.1016/j.cej.2006.03.003)

J. C. Liu, J. H. Jean, C. C. Li, J. Am. Ceram. Soc. 89 (2006) 882 (https://doi.org/10.1111/j.1551-2916.2005.00858.x)

Z. Li, Y. Zhu, Appl. Surf. Sci. 211 (2003) 315 (https://doi.org/10.1016/S0169-4332(03)00259-9)

D. E. Zhang, L. Z. Ren, X. Y. Hao, B. Bin Pan, M. Y. Wang, J. J. Ma, F. Li, S. A. Li, Z. W. Tong, Appl. Surf. Sci. 355 (2015) 547 (https://doi.org/10.1016/j.apsusc.2015.04.018)

Y. Chen, L. Hu, M. Wang, Y. Min, Y. Zhang, Colloids Surfaces, A 336 (2009) 64 (https://doi.org/10.1016/j.colsurfa.2008.11.018)

M. Pudukudy, Z. Yaakob, Chem. Pap. 68 (2014) 1087 (https://doi.org/10.2478/s11696-014-0561-7)

Y. Ju, J. Fang, X. Liu, Z. Xu, X. Ren, C. Sun, S. Yang, Q. Ren, Y. Ding, K. Yu, L. Wang, Z. Wei, J. Hazard. Mater. 185 (2011) 1489 (https://doi.org/10.1016/j.jhazmat.2010.10.074)

Y. Ju, S. Yang, Y. Ding, C. Sun, A. Zhang, L. Wang, J. Phys. Chem., A 112 (2008) 11172 (https://doi.org/10.1021/jp804439z)

S. Meena, D. Vaya, B. K. Das, Bull. Mater. Sci. 39 (2016) 1735 (https://doi.org/10.1007/s12034-016-1318-4)

B. Ajitha, Y. A. Kumar Reddy, P. S. Reddy, H. J. Jeon, C. W. Ahn, RSC Adv. 6 (2016) 36171 (https://doi.org/10.1039/c6ra03766f).

Graphical Abstract

Published

2021-03-22

How to Cite

[1]
M. Singh, D. Vaya, R. Kumar, and B. Das, “Role of EDTA capped cobalt oxide nanomaterial in photocatalytic degradation of dyes”, J. Serb. Chem. Soc., vol. 86, no. 3, pp. 327-340, Mar. 2021.

Issue

Section

Environmental Chemistry