Understanding bioplastic materials – Current state and trends

Authors

  • Sanja Jeremic Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
  • Jelena Milovanovic Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
  • Marija Mojicevic Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
  • Sanja Skaro Bogojevic Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia
  • Jasmina Nikodinovic-Runic Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia

DOI:

https://doi.org/10.2298/JSC200720051J

Keywords:

bioplastics, biopolymers, biodegradation, polylactic acid, sustainability polyhydroxyalkanoates

Abstract

Plastic pollution is now considered one of the largest environmental threats facing humans and animals globally. Development of bioplastic mater­ials may offer part of the solution as bioplastics include both nondegradable and biodegradable materials with both being important for sustainability. Bio­plastic materials are currently being designed to encompass minimal carbon footprint, high recycling value and complete biodegradability. This review examines recent developments and trends in the field of bioplastic materials. A range of the most utilized bioplastic materials is presented (poly(lactic acid) (PLA), polyhydroxyalkanoate (PHA), starch, cellulose, bio-based poly(butyl­ene succinate) (bio-PBS) and bio-polyethylene (bio-PE)) including their pro­duction, application and degradation options.

References

M. Lackner, Bioplastics, Kirk‐Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 2015 (https://doi.org/10.1002/0471238961.koe00006)

PlasticsEurope, Plastics – the Facts 2019: An analysis of European plastics production, demand and waste data, Düsseldorf, 2019

T. Thiounn, R. C. Smith, J. Polym. Sci. 58 (2020) 1347 (https://doi.org/10.1002/pol.20190261)

L. Lu, T. Luo, Y. Zhao, C. Cai, Z. Fu, Y. Jin, Sci. Total Environ. 667 (2019) 94 (https://doi.org/10.1016/j.scitotenv.2019.02.380)

H. Karan, C. Funk, M. Grabert, M. Oey, B. Hankamer, Trends Plant Sci. 24 (2019) 237 (https://doi.org/10.1016/j.tplants.2018.11.010)

M. Rujnić-Sokele, A. Pilipović, Waste Manage. Res. 35 (2017) 132 (https://doi.org/10.1177/0734242X16683272)

S. Spierling, E. Knüpffer, H. Behnsen, M. Mudersbach, H. Krieg, S. Springer, S. Albrecht, C. Herrmann, H.-J. Endres, J. Cleaner Prod. 185 (2018) 476 (https://doi.org/10.1016/j.jclepro.2018.03.014)

M. Vert, Y. Doi, K.-H. Hellwich, M. Hess, P. Hodge, P. Kubisa, M. Rinaudo, F. Schué, Pure Appl. Chem. 84 (2012) 377 (https://doi.org/10.1351/PAC-REC-10-12-04)

A. McNaught, A. Wilkinson, Compendium of Chemical Terminology: IUPAC Recommendations, Blackwell Science, Malden, MA, 1997 (ISBN 0865426848)

PD CEN/TR 15351: Guide for vocabulary in the field of degradable and biodegradable polymers and plastic items, 2006

G. Kale, T. Kijchavengkul, R. Auras, M. Rubino, S. E. Selke, S. P. Singh, Macromol. Biosci. 7 (2007) 255 (https://doi.org/10.1002/mabi.200600168)

T. Narancic, S. Verstichel, S. Reddy Chaganti, L. Morales-Gamez, S. T. Kenny, B. De Wilde, R. Babu Padamati, K. E. O’Connor, Environ. Sci. Technol. 52 (2018) 10441 (https://doi.org/10.1021/acs.est.8b02963)

M. P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, Wiley & Sons, New York, 2011 (ISBN: 978-1-118-231463)

K. Nehra, P. Jamdagni, P. Lathwal, in Plant Biotechnology: Recent Advancements and Developments, S. K. Gahlawat, R. K. Salar, P. Siwach, J. S. Duhan, S. Kumar, P. Kaur (Eds.), Springer, Singapore, 2017, pp. 297 (ISBN 978-981-10-4732-9)

R. P. Babu, K. O'Connor, R. Seeram, Prog. Biomater. 2 (2013) 8 (https://doi.org/10.1186/2194-0517-2-8)

J. E. G. van Dam, B. de Klerk-Engels, P. C. Struik, R. Rabbinge, Ind. Crops Prod. 21 (2005) 129 (https://doi.org/10.1016/j.indcrop.2004.02.003)

S. Ramesh Kumar, P. Shaiju, K. E. O'Connor, P. Ramesh Babu, Current Op. Green Sustain. Chem. 21 (2020) 75 (https://doi.org/10.1016/j.cogsc.2019.12.005)

European Bioplastics (https://www.european-bioplastics.org/market, accessed July 30th 2020)

R. Hatti-Kaul, L. J. Nilsson, B. Zhang, N. Rehnberg, S. Lundmark, Trends Biotechnol. 38 (2020) 50 (https://doi.org/10.1016/j.tibtech.2019.04.011)

Bioplastics Market Development Update 2019, European Bioplastics, 2019

M. Jamshidian, E. A. Tehrany, M. Imran, M. Jacquot, S. Desobry, Compr. Rev. Food Sci. Food Saf. 9 (2010) (https://doi.org/10.1111/j.1541-4337.2010.00126.x)

Y. Wang, Y. Tashiro, K. Sonomoto, J. Biosci. Bioeng. 119 (2015) 10 (https://doi.org/10.1016/j.jbiosc.2014.06.003)

E. T. H. Vink, K. R. Rábago, D. A. Glassner, B. Springs, R. P. O'Connor, J. Kolstad, P. R. Gruber, Macromol. Biosci. 4 (2004) 551 (https://doi.org/10.1002/mabi.200400023)

C. Castro-Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang, R. Auras, Adv. Drug Delivery Rev. (2016) (https://dx.doi.org/10.1016/j.addr.2016.03.010)

S. Su, R. Kopitzky, S. Tolga, S. Kabasci, Polymers 11 (2019) 1193 (https://doi.org/10.3390/polym11071193)

O. Martin, L. Averous, Polymer 42 (2001) 6209 (https://doi.org/10.1016/S0032-3861(01)00086-6)

R. Turco, R. Ortega-Toro, R. Tesser, S. Mallardo, S. Collazo-Bigliardi, A. Boix, M. Malinconico, M. Rippa, M. Di Serio, G. Santagata, Coatings 9 (2019) 574 (https://doi.org/10.3390/coatings9090574)

M. P. Arrieta, M. D. Samper, M. Aldas, J. Lopez, Materials (Basel) 10 (2017) (https://doi.org/10.3390/ma10091008)

C. Diaz, H. Y. Pao, S. Kim, J. App. Packag.Res. 8 (2016) (doi: 10.14448/japr.08.0018)

S. Su, R. Kopitzky, S. Tolga, S. Kabasci, Polymers (Basel) 11 (2019) (doi: 10.3390/polym11071193. (10.3390/polym11071193)

Q. Ou-Yang, B. Guo, J. Xu, ACS Omega 3 (2018) 14309 (https://doi.org/10.1021/acsomega.8b02549)

M. Nofar, D. Sacligil, P. J. Carreau, M. R. Kamal, M. C. Heuzey, Int. J. Biol. Macromol. 125 (2019) 307 (https://doi.org/10.1016/j.ijbiomac.2018.12.002)

D. Maga, M. Hiebel, N. Thonemann, Resour. Conserv. Recycl. 149 (2019) 86 (https://doi.org/10.1016/j.resconrec.2019.05.018)

F. Gu, J. Guo, W. Zhang, P.A. Summers, P. Hall, Sci. Total Environ. 601–602 (2017) 1192 (https://doi.org/10.1016/j.scitotenv.2017.05.278)

M. Niaounakis, Eur. Polym. J. 114 (2019) 464 (https://doi.org/10.1016/j.eurpolymj.2019.02.027)

I. Wojnowska-Baryła, D. Kulikowska, K. Bernat, Sustainability 12 (2020) 2088 (https://doi.org/10.3390/su12052088)

A. Calmon, S. Guillaume, V. Bellon-Maurel, P. Feuilloley, F. Françoise Silvestre, J. Environ. Polym. Degrad. 7 (1999) 157 (https://doi.org/10.1023/A:1022849706383)

E. Rudnik, D. Briassoulis, Ind. Crops Prod. 33 (2011) 648 (https://doi.org/10.1016/j.indcrop.2010.12.031)

M. Karamanlioglu, G. D. Robson, Polym. Degrad. Stab. 98 (2013) 2063 (https://doi.org/10.1016/j.polymdegradstab.2013.07.004)

A. S. Al Hosni, J.K. Pittman, G. D. Robson, Waste Manag. 97 (2019) 105 (https://doi.org/10.1016/j.wasman.2019.07.042)

Y. Tokiwa, B. P. Calabia, Appl. Microbiol. Biotechnol. 72 (2006) 244 (https://doi.org/10.1007/s00253-006-0488-1)

B. G. Kale, R. Auras, S. P. Singh, Packag. Technol. Sci. 20 (2007) 49 (https://doi.org/10.1002/pts.742)

H. Tsuji, K. Suzuyoshi, Polym. Degrad. Stab. 75 (2002) 347 (https://doi.org/10.1016/S0141-3910(01)00240-3)

H. Tsuji, K. Suzuyoshi, Polym. Degrad. Stab. 75 (2002) 357 (https://doi.org/10.1016/S0141-3910(01)00239-7)

G.-Q. Chen, Chem. Soc. Rev. 38 (2009) 2434 (https://doi.org/10.1039/B812677C)

A. Steinbüchel, H. E. Valentin, FEMS Microbiol. Lett. 128 (1995) 219 (https://doi.org/10.1111/j.1574-6968.1995.tb07528.x)

A. Anjum, M. Zuber, K. M. Zia, A. Noreen, M. N. Anjum, S. Tabasum, Int. J. Biol. Macromol. 89 (2016) 161 (https://doi.org/10.1016/j.ijbiomac.2016.04.069)

C. S. K. Reddy, R. Ghai, Rashmi, V. C. Kalia, Bioresour. Technol. 87 (2003) 137 (https://doi.org/10.1016/S0960-8524(02)00212-2)

Y. Zhong, P. Godwin, Y. Jin, H. Xiao, Adv. Ind. Eng. Polym. Res. 3 (2020) 27 (https://doi.org/10.1016/j.aiepr.2019.11.002)

S. Y. Li, C. L. Dong, S. Y. Wang, H. M. Ye, G.-Q. Chen, Appl. Microbiol. Biotechnol. 90 (2011) 659 (https://doi.org/10.1007/s00253-010-3069-2)

A. Mukheem, M. Hossain, S. Shahabuddin, K. Muthoosamy, S. Manickam, K. Sudesh, R. Saidur, N. Sridewi, Material 11 (2018) 1673 (https://doi.org/10.3390/ma11091673)

I. Zembouai, M. Kaci, S. Bruzaud, A. Benhamida, Y.-M. Corre, Y. Grohens, Polym. Test. 32 (2013) 842 (https://doi.org/10.1016/j.polymertesting.2013.04.004)

Z. Li, J. Yang, X. J. Loh, NPG Asia Mat. 8 (2016) 265 (https://doi.org/10.1038/am.2016.48)

S. Godbole, S. Gote, M. Latkar, T. Chakrabarti, Bioresour. Technol. 86 (2003) 33 (https://doi.org/10.1016/S0960-8524(02)00110-4)

P. Mousavioun, W. O. S. Doherty, G. George, Ind. Crops Prod. 32 (2010) 656 (https://doi.org/10.1016/j.indcrop.2010.08.001)

K. Dietrich, M.-J. Dumont, L. F. Del Rio, V. Orsat, Sustain. Prod. Consum. 9 (2017) 58 (https://doi.org/10.1016/j.spc.2016.09.001)

G.-Q. Chen, X.-Y. Chen, F.-Q. Wu, J.-C. Chen, Adv. Ind. Eng. Polym. Res. 3 (2020) 1 (https://doi.org/10.1016/j.aiepr.2019.11.001)

M. Koller, L. Maršálek, M. M. de Sousa Dias, G. Braunegg, New Biotechnol. 37 (2017) 24-38 (https://doi.org/10.1016/j.nbt.2016.05.001)

Y. F. Tsang, V. Kumar, P. Samadar, Y. Yang, J. Lee, Y. S. Ok, H. Song, K.-H. Kim, E. E. Kwon, Y. J. Jeon, Environ. Int. 127 (2019) 625 (https://doi.org/10.1016/j.envint.2019.03.076)

T. U. Gerngross, D. P. Martin, PNAS 92 (1995) 6279 (https://doi.org/10.1073/pnas.92.14.6279)

A. M. Gumel, M. S. M. Annuar, Y. Chisti, J. Polym. Environ. 21 (2013) 580 (https://doi.org/10.1007/s10924-012-0527-1)

M. R. Kosseva, E. Rusbandi, Int. J. Biol. Macromol. 107 (2018) 762 (https://doi.org/10.1016/j.ijbiomac.2017.09.054)

D. H. Vu, D. Åkesson, M. J. Taherzadeh, J. A. Ferreira, Bioresour. Technol. 298 (2020) 122393 (https://doi.org/10.1016/j.biortech.2019.122393)

A. Soroudi, I. Jakubowicz, Eur. Polym. J. 49 (2013) 2839 (https://doi.org/10.1016/j.eurpolymj.2013.07.025)

M. Zaverl, M. Ö. Seydibeyoğlu, M. Misra, A. Mohanty, J. Appl. Polym. Sci. 125 (2012) E324-E331 (https://doi.org/10.1002/app.36840)

H. Ariffin, H. Nishida, M. A. Hassan, Y. Shirai, Biotechnol. J. (2010) 484 (https://doi.org/10.1002/biot.200900293)

S. M. Emadian, T. T. Onay, B. Demirel, Waste Manage. 59 (2017) 526 (https://doi.org/10.1016/j.wasman.2016.10.006)

V. Bátori, D. Åkesson, A. Zamani, M. J. Taherzadeh, I. S. Horváth, Waste Manage. 80 (2018) 406-413 (https://doi.org/10.1016/j.wasman.2018.09.040)

F. Ruggero, R. Gori, C. Lubello, Waste Manage. Res. 37 (2019) 959 (https://doi.org/10.1177/0734242X19854127)

D. I. Martínez-Tobón, M. Gul, A. L. Elias, D. Sauvageau, Appl. Microbiol. Biotechnol. 102 (2018) 8049 (https://doi.org/10.1007/s00253-018-9153-8)

A. K. Urbanek, A. M. Mirończuk, A. García-Martín, A. Saborido, I. de la Mata, M. Arroyo, Biochim. Biophys. Acta, Proteins Proteomics 1868 (2020) 140315 (https://doi.org/10.1016/j.bbapap.2019.140315)

E. Hablot, S. Dharmalingam, D. G. Hayes, L. C. Wadsworth, C. Blazy, R. Narayan, J. Polym. Environ. 22 (2014) 417 (https://doi.org/10.1007/s10924-014-0697-0)

A. Nakayama, N. Yamano, N. Kawasaki, Polym. Degrad. Stab. 166 (2019) 290 (https://doi.org/10.1016/j.polymdegradstab.2019.06.006)

V. Gopinath, S. Saravanan, A. R. Al-Maleki, M. Ramesh, J. Vadivelu, Biomed. Pharmacother. 107 (2018) 96 (https://doi.org/10.1016/j.biopha.2018.07.136)

R. Song, M. Murphy, C. Li, K. Ting, C. Soo, Z. Zheng, Drug Des., Dev. Ther. 12 (2018) 3117 (https://doi.org/10.2147/DDDT.S165440)

L. Averousa, L. Moroa, P. Doleb, C. Fringantc, Polymer 41 (2000) 4157 (https://doi.org/10.1016/S0032-3861(99)00636-9)

M. Labet, W. Thielemans, A. Dufresne, Biomacromolecules 8 (2007) 2916 (https://doi.org/10.1021/bm700468f)

A. J. Salgado, O. P. Coutinho, R. L. Reis, Macromol. Biosci. 4 (2004) 743 (https://doi.org/10.1002/mabi.200400026)

E. J. Bealer, S. Onissema-Karimu, A. Rivera-Galletti, M. Francis, J. Wilkowski, D. Salas-de la Cruz, X. Hu, Polymers 12 (2020) 464 (https://doi.org/10.3390/polym12020464)

R. Whistler, J. Daniel, Starch, John Wiley & Sons, Inc., Hoboken, NJ, 2005

O. O. Ige, L. E. Umoru, S. Aribo, ISRN Mater. Sci. 2012 (2012) 983062 (https://doi.org/10.5402/2012/983062)

R. de Bragança, P. Fowler, Industrial markets for starch, The Biocomposites Centre, University of Wales, Bangor, Gywnedd, 2004 (http://bc.bangor.ac.uk/_includes/docs/pdf/indsutrial%20markets%20for%20starch.pdf

I. Vroman, L. Tighzert, Materials (Basel) 2 (2009) 307 (https://doi.org/10.3390/ma2020307)

M. S. Peresin, Y. Habibi, J. O. Zoppe, J. J. Pawlak, O. J. Rojas, Biomacromolecules 11 (2010) 674 (https://doi.org/10.1021/bm901254n)

R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev. 40 (2011) 3941 (https://doi.org/10.1039/C0CS00108B)

A. Majeed, R. A. Najar, W. Ul Rehman, S. Choudhary, S. Thakur, A. Singh, G. Sharma, P. Bhardwaj, in Natural Polymers: Derivatives, Blends and Composites, Vol. I, S. Ikram, S. Ahmed (Eds.), Nova Science Publishers, New York, 2016, pp. 23 (ISBN: 978-1-63485-831-1)

R. Mohammadinejad, A. Kumar, M. Ranjbar-Mohammadi, M. Ashrafizadeh, S. S. Han, G. Khang, Z. Roveimiab, Polymers (Basel) 12 (2020) 176 (https://doi.org/10.3390/polym12010176)

P. Chmielarz, eXPRESS Polym. Lett. 11 (2017) 140 (https://doi.org/10.3144/expresspolymlett.2017.15)

B. V. Mohite, S. V. Patil, Biotechnol. Appl. Biochem. 61 (2014) 101 (https://doi.org/10.1002/bab.1148)

P. A. Richmond, in Biosynthesis and Biodegradation of Cellulose, C. H. Haigler, P. J. Weimer (Eds.), Marcel Dekker, Inc., New York, 1999 (ISBN 0–8247–8387–5)

J. K. Park, J. Y. Jung, Y. H. Park, Biotechnol. Lett. 25 (2003) 2055 (https://doi.org/10.1023/B:BILE.0000007065.63682.18)

J. Y. Jung, J. K. Park, H. N. Chang, Enzyme Microb. Technol. 37 (2005) 347 (https://doi.org/10.1016/j.enzmictec.2005.02.019)

H. S. Barud, J. Gutierrez, W. R. Lustri, M. F. S. Peres, S. J. L. Ribeiro, S. Saska, A. Tercjak, Bacterial Cellulose (2016) 384 (https://doi.org/10.1002/9781119126218.ch21)

S. P. Lin, I. Loira Calvar, J. M. Catchmark, J. R. Liu, A. Demirci, K. C. Cheng, Cellulose 20 (2013) 2191 (https://doi.org/10.1007/s10570-013-9994-3)

N. Shah, M. Ul-Islam, W. A. Khattak, J. K. Park, Carbohydr. Polym. 98 (2013) 1585 (https://doi.org/10.1016/j.carbpol.2013.08.018)

H. S. Barud, C. Barrios, T. Regiani, R. F. C. Marques, M. Verelst, J. Dexpert-Ghys, Y. Messaddeq, S. J. L. Ribeiro, Mater. Sci. Eng., C 28 (2008) 515 (https://doi.org/10.1016/j.msec.2007.05.001)

A. M. Arévalo Gallegos, S. H. Carrera, R. Parra, T. Keshavarz, H. M. N. Iqbal, Bioresour. Technol. 11 (2016) 5641 (https://doi:10.15376/biores.11.2.Gallegos)

A. Banerjee, K. Chatterjee, G. Madras, Mater. Sci. Technol. 30 (2014) 567 (https://doi.org/10.1179/1743284713Y.0000000503)

D. Beaton, P. Pelletier, R. R. Goulet, Front. Microbiol. 10 (2019) 204 (https://doi.org/10.3389/fmicb.2019.00204)

W. Czaja, A. Krystynowicz, S. Bielecki, R. M. Brown, Biomaterials 27 (2006) 145 (https://doi.org/10.1016/j.biomaterials.2005.07.035)

Y. Z. Wan, H. Luo, F. He, H. Liang, Y. Huang, X. L. Li, Compos. Sci. Technol. 69 (2009) 1212 (https://doi.org/10.1016/j.compscitech.2009.02.024)

R. Jayasekara, I. Harding, I. Bowater, G. B. Y. Christie, G. T. Lonergan, J. Polym. Environ. 11 (2003) 49 (https://doi.org/10.1023/A:1024219821633)

R. Gattin, A. Copinet, C. Bertrand, Y. Couturier, Int. Biodeterior. Biodegrad. 50 (2002) 25 (https://doi.org/10.1016/S0964-8305(02)00039-2)

H.-T. Liao, C.-S. Wu, Mater. Sci. Eng., A 515 (2009) 207 (https://doi.org/10.1016/j.msea.2009.03.003)

G. Wypych, in Handbook of Material Weathering (Fifth Edition), G. Wypych (Ed.), Elsevier, Oxford, 2013, pp. xi–xii (ISBN: 9781895198621)

D. R. Ruka, P. Sangwan, C. J. Garvey, G. P. Simon, K. M. Dean, Environ. Sci. Technol. 49 (2015) 9979 (https://doi.org/10.1021/es5044485)

S. Keshk, A. El-Kott, Natural bacterial biodegradable medical polymers: Bacterial cellulose, Elsevier, King Khalid University, 2017, p. 295 (https://doi.org/10.1016/B978-0-08-100372-5.00010-6)

I. Leppänen, M. Vikman, A. Harlin, H. Orelma, J. Polym. Environ. 28 (2020) 458 (https://doi.org/10.1007/s10924-019-01621-w)

S. Zhang, J. Yang, X. Liu, J. Chang, A. Cao, Biomacromolecules 4 (2003) 437 (https://doi.org/10.1021/bm0201183)

Y. Tokiwa, B. P. Calabia, C. U. Ugwu, S. Aiba, Int. J. Mol. Sci. 10 (2009) 3722 (https://doi.org/10.3390/ijms10093722)

J. Xu, B.-H. Guo, Biotechnol. J. 5 (2010) 1149 (https://doi.org/10.1002/biot.201000136)

J. Xu, B.-H. Guo, in in Plastics from Bacteria: Natural Functions and Applications, Microbiology Monographs, G. Guo-Qiang Chen (Ed.), Springer-Verlag, Berlin, 2010, pp. 347–388 (ISBN 978-3-642-03287-5)

N. Cheroennet, S. Pongpinyopap, T. Leejarkpai, U. Suwanmanee, J. Cleaner Prod. 167 (2016) 987 (https://doi.org/10.1016/j.jclepro.2016.11.152)

Y.-S. Tai, M. Xiong, P. Jambunathan, J. Wang, J. Wang, C. Stapleton, K. Zhang, Nat. Chem. Biol. 12 (2016) 247 (https://doi.org/10.1038/nchembio.2020)

K.-K. Cheng, X.-B. Zhao, J. Zeng, J.-A. Zhang, Biofuels Bioprod. Biorefin. 6 (2012) 302 (https://doi.org/10.1002/bbb.1327)

P. S. P. Market Report: Bioplastics: technologies and global markets (market report)

G. Ahrens, I. Roy, B. Pilic, P. Morganti, M. B. Coltelli, S. Danti, C. Lacoste, A. Gagliardini, R. Arias, EU Commun. (2017) (https://cordis.europa.eu/project/id/745839)

Y. Y. H. Maeda, K. Abe, F. Hasegawa, M. Machida, R. Ishioka, K. Gomi, T. Nakajima, Appl. Microbiol. Biotechnol. 67 (2005) 778 (https://doi.org/10.1007/s00253-004-1853-6)

Bioplastics magazine, Bio-Based Polymers Have Potential in Biomedicine, Agricultural Markets (2019) (https://www.bioplasticsmagazine.com/en/)

T. Fujimaki, Polym. Degrad. Stab. 59 (1998) 209 (https://doi.org/10.1016/S0141-3910(97)00220-6)

R. Ishioka, E. Kitakuni, Y. Ichikawa, Biopolymers 4 (2002) 275 (https://application.wiley-vch.de/books/biopoly/con_v04.html)

J. Xu, B.-H. Guo, in Plastics from Bacteria: Natural Functions and Applications, Microbiology Monographs, Springer-Verlag, Berlin, 2010, pp. 1–16 (ISBN 978-3-642-03287-5)

The Draft of the Integrated Plastic Waste Management Plan (2017-2021). Pollution Control Department, Bangkok, 2017

K. Changwichan, T. Silalertruksa, H. Gheewala, Sustainability 10 (2018) 952 (https://doi.org/10.3390/su10040952)

T. Haider, C. Vçlker, J. Kramm, K. Landfester, F. R. Wurm, Angew. Chem. Int. Ed. 58 (2019) 50 (https://doi.org/10.1002/anie.201805766)

K. Chavalitdamrong, https://challenges.openideo.com/challenge/next-gen-cup-challenge/ideas/new-gen-biopbs-coated-cup-recyclable-home-compostable-cup, accessed June 30, 2020

M. Velrajan, Int. J. Innov. Res. Develop. 3 (2014) 185 (http://internationaljournalcorner.com/index.php/ijird_ojs/article/vi¬ew/135025)

M. Puchalski, G. Szparaga, T. Biela, A. Gutowska, S. Sztajnowski, I. Krucinska, Polymers 10 (2018) 251 (https://doi.org/10.3390/polym10030251)

D. Danso, J. Chow, W. R. Streit, Appl. Environ. Microbiol. 85 (2019) 01095 (https://doi:10.1128/AEM.01095-19)

I. Voevdina, A. Kržan, Bio-based polymers, Project Plastice report, 2013 (https://www.umsicht.fraunhofer.de/content/dam/umsicht/de/dokumente/ueber-uns/nationale-infostelle-nachhaltige-kunststoffe/bio-based-polymers.pdf)

C. M. Mendieta, M. E. Vallejos, F. E. Felissia, G. Chinga‑Carrasco, M. C. Area, J. Polym. Environ. (2017) (https://doi.org/10.1007/s10924-019-01582-0)

J. Gotro, Bio Polyethylene: Drop-in Replacement (https://polymerinnovation-blog.com/bio-polyethylene-drop-in-replacement/, accessed May 15, 2020)

A. Lesiuk, S. Pasieczna-Patkowska, Chemik 67 (2013) 863 (in Polish)

S. Lambert, M. Wagner, Chem. Soc. Rev. 46 (2017) 6855 (https://doi.org/10.1039/C7CS00149E)

A. C. S. Bonhommea, A-M. Delortb, J. Lemairea, M. Sancelmeb, G. Scottc, Polym. Degrad. Stab. 81 (2003) 441 (https://doi.org/10.1016/S01413910(03)001290)

M. Mierzwa‑Hersztek, K. Gondek, M. Kopeć, J. Polym. Environ. 27 (2019) 600 (https://doi.org/10.1007/s10924-019-01368-4)

AZoCleantech, Recycling of High-Density Polyethylene (HDPE or PEHD), 2012, https://www.azocleantech.com/article.aspx?ArticleID=255, accessed May 15, 2020

ABA Australasian Bioplastics Association, https://bioplastics.org.au/bio-plastics/break¬down-process-explained/, accessed May 15, 2020

I. Kyrikou, D. Briassoulis, J. Polym. Environ. 15 (2007) 125 (https://doi.org/10.1007/s10924-007-0053-8)

S. Walker, R. Rothman, J. Cleaner Prod. 261 (2020) 121158 (https://doi.org/10.1016/j.jclepro.2020.121158)

A. Chamas, H. Moon, J. Zheng, Y. Qiu, T. Tabassum, J. H. Jang, M. Abu-Omar, S. L. Scott, S. Suh, ACS Sustainable Chem. Eng. 8 (2020) 3494 (https://doi.org/10.1021/acssuschemeng.9b06635)

T. Tiso, T. Narancic, R. Wei, E. Pollet, N. Beagan, K. Schröder, A. Honak, M. Jiang, S. T. Kenny, N. Wierckx, R. Perrin, L. Avérous, W. Zimmermann, K. O’Connor, L. M. Blank, bioRxiv (2020) (https://doi.org/10.1101/2020.03.16.993592)

L. A. Román-Ramírez, P. McKeown, C. Shah, J. Abraham, M. D. Jones, J. Wood, Ind. Eng. Chem. Res. 59 (2020) 11149 (https://doi.org/10.1021/acs.iecr.0c01122).

Published

2020-12-23

How to Cite

[1]
S. Jeremic, J. Milovanovic, M. Mojicevic, S. Skaro Bogojevic, and J. Nikodinovic-Runic, “Understanding bioplastic materials – Current state and trends”, J. Serb. Chem. Soc., vol. 85, no. 12, pp. 1507–1538, Dec. 2020.

Issue

Section

Survey

Most read articles by the same author(s)