Catalytic investigation of Pd(II) complexes over Heck-Mizoroki reaction: Tailored synthesis, characterization and density functional theory

Authors

  • Satyendra Nath Shukla Coordination Chemistry Research Lab, Department of Chemistry, Government Science College, Jabalpur (M.P.) 482001, India https://orcid.org/0000-0002-9827-8953
  • Pratiksha Gaur Coordination Chemistry Research Lab, Department of Chemistry, Government Science College, Jabalpur (M.P.) 482001, India
  • Sanjay Singh Bagri Coordination Chemistry Research Lab, Department of Chemistry, Government Science College, Jabalpur (M.P.) 482001, India
  • Ripul Mehrotra Instituto de Quimica Rosario Area Inorganica Facultad de Cs. Bioquimicas y Farmaceuticas Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario, Argentina https://orcid.org/0000-0003-2620-2244
  • Bhaskar Chaurasia Coordination Chemistry Research Lab, Department of Chemistry, Government Science College, Jabalpur (M.P.) 482001, India https://orcid.org/0000-0001-5374-7157

DOI:

https://doi.org/10.2298/JSC200902075S

Keywords:

Schiff base Pd(II) derivative, spectroscopic characterization, molecular modeling, thermogravimetric analysis, cross-coupling reaction

Abstract

Tailored reaction of Schiff base ligands with palladium(II) chloride and imidazole afford three complexes of formula [Pd(II)(L)(imdz)2]Cl; where L = 2-((E)-(p-lylimino)methyl)-6-methoxyphenol (complex 1); 2-methoxy-6-((E)-(phenylimine)methyl)phenol (complex 2); and 2-((E)-(4-chloro­phenyl­imino)methyl)-6-methoxyphenol (complex 3). Compounds were characterized with elemental analysis, molar conductance, electronic spectroscopy, ESI-MS, FT-IR, TGA, 1H-NMR and 13C-NMR. Molecular structure and different quan­tum chemical parameters were calculated using the B3LYP basis set of density functional theory with the standard 6-311+G (d, 2p) level. The catalytic potential of 1-3 was examined over Heck-Mizoroki reaction and found in order of 1 > 2 > 3.

References

K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 44 (2005) 4442 (https://doi.org/10.1002/anie.200500368)

C. Jia, T. Kitamura, Y. Fujiwara, Acc. Chem. Res. 34 (2001) 633 (https://dx.doi.org/10.1021/ar000209h)

A. Balanta, C. Godard, C. Claver, Chem. Soc. Rev. 40 (2011) 4973 (https://dx.doi.org/10.1039/c1cs15195a)

A. R. Hajipour, F. Rafiee, J. Organomet. Chem. 696 (2011) 2669 (https://dx.doi.org/10.1016/j.jorganchem.2011.03.023)

A. Dewan, U. Bora, G. Borah, Tet. Lett. 55 (2014) 1689 (https://dx.doi.org/10.1016/j.tetlet.2014.01.041)

F. Bakkali, S. Averbeck, D. Averbeck, M. Idaomar, Food Chem. Toxicol. 46 (2008) 446 (https://dx.doi.org/10.1016/j.fct.2007.09.106)

M. Esmaeilpour, J. Javidi, J. Chin. Chem. Soc. 62 (2015) 614 (http://dx.doi.org/10.1002/jccs.201500013)

R. F. Heck, J. Am. Chem. Soc. 90 (1968) 5518 (https://doi.org/10.1021/ja01022a034)

J. P. Genet, M. Savignac, J. Organomet. Chem. 576 (1999) 305 (https://doi.org/10.1021/ja01022a034)

M. Sankarganesh, N. Revathi, J. D. Raja, K. Sakthikumar, G. G. V. Kumar, J. Rajesh, M. Rajalakshmi, L. Mitu, J. Serb. Chem. Soc. 84 (2019) 291 (https://dx.doi.org/10.2298/JSC180609080)

H. O. Oloyede, J. A. O. Woods, H. Gorls, W. Plass, A. O. Eseola, J. Mol. Struct. 1199 (2020) 1 (https://dx.doi.org/10.1016/j.molstruc.2019.127030)

H. A. Doung, M. Cross, J. Org. Lett. 6 (2004) 4679 (https://dx.doi.org/10.1021/ol048211m)

P. J. Knowles, A. Whiting, Org. Biomol. Chem. 5 (2007) 31 (https://dx.doi.org/10.1039/b611547k)

C. S. Letizia, J. Cocchiara, J. Lalko, A. M. Api, Food Chem. Toxicol. 41 (2003) 943 (https://dx.doi.org/10.1016/S0278-6915(03)00015-2)

G. H. Jeffery, J. Bassett, J. Mendham, R. C. Denney, Vogel’s Textbook of Quantitative Inorganic Analysis, 5th ed., John Wiley & Sons, Inc. New York, 1989

Y. Y. Yu, H. D. Xian, J. F. Liu, G. L. Zhao, Molecules 14 (2009) 1747 (https://dx.doi.org/10.3390/molecules14051747)

M. Amirnasar, A. H. Mahmoudkhani, A. Gorji, S. Dehghanpour, H. R. Bijanzadeh, Polyhedron 21 (2002) 2733 (https://dx.doi.org/10.1016/S0277-5387(02)01277-9)

N. Raman, Y. P. Raja, A. Kulandaisamy, Proc. Indian Acad. Sci. (Chem. Sci.) 113 (2001) 183

G. Y. Yeap, S. T. Ha, S. N. Ishizawa, K. L. Boey, W. A. K. Mahmood, J. Mol. Struct. 658 (2003) 87 (https://dx.doi.org/10.1016/S0022-2860 (03)00453-8)

Gaussian Inc., Wallingford, CT, 2009

M. Dehestani, L. Zeidabadinejad, J. Serb. Chem. Soc. 80 (2015) 1008 (https://dx.doi.org/10.2298/JSC150224027Z)

D. A. Vicic, G. D. Jones, Experimental Methods and Techniques: Basic Techniques, Elsevier Ltd., University of Arkansas, Fayetteville, AR, 2007

W. J. Geary, J. Coord. Chem. Rev. 7 (1971) 81 (https://dx.doi.org/10.1016/S0010-8545(00)80009-0)

E. G. Bakirdere, M. F. Fellah, E. Canpolat, M. Kaya, S. Gur, J. Serb. Chem. Soc. 81 (2016) 520 (https://doi.org/10.2298/JSC151030008B)

M. Shabbir, Z. Akhter, I. Ahmad, S. Ahmed, M. Shafiq, B. Mirza, V. Mckee, K. S. Munawar, A. R. Ashraf, J. Mol. Struct. 1118 (2016) 250 (https://dx.doi.org/10.1016/j.molstruc.2016.04.003)

A. A. Soliman, I. O. Alajrawy, A. F. Attabi, M. R. Shaaban, W. Linert, Spectrochim. Acta, A 152 (2016) 358 (https://dx.doi.org/10.1016/j.saa.2015.07.076)

Z. Leka, S. Grujic, Z. Tesic, S. Lukic, S. Skuban, S. Trifunovic, J. Serb. Chem. Soc. 69 (2004) 137 (https://doi.org/10.2298/JSC0402137L)

C. V. Barra, F. V. Rocha, A. V. G. Netto, R. C. G. Frem, A. E. Mauro, I. Z. Carlos, S. R. Ananias, M. B. Quilles, J. Therm. Anal. Calorim. 106 (2011) 489 (https://dx.doi.org/10.1007/s10973-011-1393-0)

S. A. Al-Jibori, M. M. Barbooti, M. H. S. Al-Jibori, B. K. Aziz, J. Mater. Environ. Sci. 8 (2017) 1365

V. G. Netto, A. M. Santana, A. E. Mauro, Regina C. G. Frem, J. Therm. Anal. Calorim 79 (2005) 339 (https://doi.org/10.1007/s10973-005-0061-7)

N. Yıldırım, N. Demir, G. Alpaslan, B. Boyacioglu, M. Yıldız, H. Unver, J. Serb. Chem. Soc. 83 (2018) 707 (https://dx.doi.org/10.2298/JSC171001009Y)

T. A. Mohamed, I. A. Shaaban, R. S. Farag, W. M. Zoghaib, M. S. Afifi, Spectrochim. Acta, A 135 (2015) 417 (https://dx.doi.org/10.1016/j.saa.2014.07.018)

J. M. Collinson, Wilton-Ely, J. Cat. Commun. 87 (2016) 78 (https://dx.doi.org/10.1016/j.catcom.2016.09.006)

S. Layek, Anuradha. B. Agrahari, D. D. Pathak, J. Organomet. Chem. 846 (2017) 105 (https://dx.doi.org/10.1016/j.jorganchem.2017.05.049)

R. N. Prabhu, R. Ramesh, Tetrahedron Lett. 53 (2012) 5961 (https://dx.doi.org/10.1016/j.tetlet.2012.08.120)

C. S. Consorti, G. Ebeling, F. R. Flores, F. Rominger, J. Adv. Synth. Catal. 346 (2004) 617 (https://dx.doi.org/10.1002/adsc.200303228).

Graphical Abstract

Published

2021-03-22

How to Cite

[1]
S. N. Shukla, P. Gaur, S. S. Bagri, R. Mehrotra, and B. Chaurasia, “Catalytic investigation of Pd(II) complexes over Heck-Mizoroki reaction: Tailored synthesis, characterization and density functional theory”, J. Serb. Chem. Soc., vol. 86, no. 3, pp. 269-282, Mar. 2021.

Issue

Section

Inorganic Chemistry