

J. Serb. Chem. Soc. 87 (10) S331-S353 (2022)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Synthesis of novel fluorinated 1,5-benzothiazepine derivatives and their biological evaluation as anticancer and antibacterial agents

SONAL R. BHABAL, SARFARAZ F. SHAIKH, ISHITA P. YELLAPURKAR, GANESH S. PAVALE and MUCHELI M. V. RAMANA*

Department of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India

J. Serb. Chem. Soc. 87 (10) (2022) 1109–1116

SPECTROSCOPIC DATA

2-(3,4-difluorophenyl)-4-phenyl-2,3-dihydrobenzo[b][1,4]thiazepine (4a)

Yellow solid, Yield: 91 %, M.P. = 145-147 °C, IR (v_{max} /cm⁻¹): 2918 (C-H), 1605 (C=N), 1322 (C-N), 685 (C-S-C). ¹H NMR (300 MHz, CDCl₃) δ = 8.04 (dd, J= 7.6, 1.7 Hz, 2H, Ar-<u>H</u>), 7.60 (dd, J= 7.7, 0.9 Hz, 1H, Ar-<u>H</u>), 7.49 (dt, J= 8.7, 4.3 Hz, 4H, Ar-<u>H</u>), 7.31 (dd, J= 7.9, 1.0 Hz, 1H, Ar-<u>H</u>), 7.21- 6.97 (m, 4H, Ar-<u>H</u>), 4.92 (dd, J_{ax} = 12.5, J_{ab} = 4.7 Hz, 1H, C<u>H</u>), 3.28 (dd, J_{bx} = 12.9, J_{ab} = 4.8 Hz, 1H, C<u>H</u>₂), 2.97 (t, J_{ab} = 12.7 Hz, 1H, C<u>H</u>₂). ¹³C NMR (75 MHz, CDCl₃) δ = 168.51, 152.39, 150.23 (dd, ¹ J_{FC} = 249.2, 12.8 Hz), 149.74 (dd, ¹ J_{FC} = 248.8, 12.5 Hz), 141.77- 139.95 (m), 137.49, 134.99, 131.25, 130.08, 128.83, 127.37, 125.48, 122.08 (t, J = 4.9 Hz), 117.43 (d, ² J_{FC} = 17.4 Hz), 115.25 (d, ² J_{FC} = 17.8 Hz), 59.28 (<u>C</u>H), 37.52 (<u>C</u>H₂). MS (ESI) *m/z*: 352.5 (M+1)⁺. Elemental analysis for C₂₁H₁₅F₂NS: C, 71.78; H, 4.30; N, 3.99; S, 9.12; found: C, 71.65; H, 4.28; N, 3.82; S, 9.09.

2-(3,4-difluorophenyl)-4-(p-tolyl)-2,3-dihydrobenzo[b][1,4]thiazepine (4b)

Yellow solid, Yield: 93 %, M.P.= 157-159 °C, IR (v_{max}/cm^{-1}): 2901 (C-H), 1604 (C=N),1319 (C-N), 684 (C-S-C). ¹H NMR (300 MHz, CDCl₃) δ = 7.93 (d, J= 8.1 Hz, 2H, Ar-<u>H</u>), 7.58 (d, J= 7.6 Hz, 1H, Ar-<u>H</u>), 7.47 (t, J= 7.6 Hz, 1H, Ar-<u>H</u>), 7.29 (d, J= 8.0 Hz, 3H, Ar-<u>H</u>), 7.08 (ddd, J= 14.7, 11.3, 6.0 Hz, 4H, Ar-<u>H</u>), 4.89 (dd, J_{ax} = 12.5, J_{ab} = 4.7 Hz, 1H, C<u>H</u>), 3.26 (dd, J_{bx} = 12.9, J_{ab} = 4.8 Hz, 1H, C<u>H</u>₂), 2.95 (t, J_{ab} = 12.7 Hz, 1H, C<u>H</u>₂), 2.43 (s, 3H, C<u>H</u>₃). ¹³C NMR (75 MHz, CDCl₃) δ = 168.33, 152.52, 150.22 (dd, ¹ J_{FC} = 249.0, 12.8 Hz), 149.72 (dd, ¹ J_{FC} = 248.8, 12.6 Hz), 141.74, 141.12, 134.96, 134.74, 130.04, 129.55, 127.37, 125.38 (d, ³ J_{FC} = 9.7 Hz), 122.07 (t, J= 4.8 Hz), 117.40 (d, ² J_{FC} =17.5 Hz), 115.24 (d, ² J_{FC} =17.7 Hz), 59.24 (<u>C</u>H), 37.42 (<u>C</u>H₂), 21.47 (<u>C</u>H₃). MS (ESI) *m*/*z*: 366.5 (M+1)⁺. Elemental analysis for C₂₂H₁₇F₂NS: C, 72.31; H, 4.69; N, 3.83; S, 8.77; found: C, 72.20; H, 4.54; N, 3.63; S, 8.68.

4-(4-chlorophenyl)-2-(3,4-difluorophenyl)-2,3-dihydrobenzo[b][1,4]thiazepine (4c)

Yellow solid, Yield: 90 %, M.P. = 149-151 °C, IR (v_{max}/cm^{-1}): 2902 (C-H), 1605 (C=N), 1321 (C-N), 685 (C-S-C). ¹H NMR (300 MHz, CDCl₃) δ = 7.96 (d, *J*= 8.7 Hz, 2H, Ar-<u>H</u>),

S331

^{*}Corresponding author. E-mail: mmvramana@yahoo.co.in

BHABAL et al.

7.59 (dd, J=7.7, 1.2 Hz, 1H, Ar-<u>H</u>), 7.53-7.40 (m, 3H, Ar-<u>H</u>), 7.29 (dd, J=7.9, 1.2 Hz, 1H, Ar-<u>H</u>), 7.22- 6.93 (m, 4H, Ar-<u>H</u>), 4.89 (dd, $J_{ax}=12.4$, $J_{ab}=4.8$ Hz, 1H, C<u>H</u>), 3.22 (dd, $J_{bx}=13.0$, $J_{ab}=4.9$ Hz, 1H, C<u>H</u>₂), 2.96 (t, $J_{ab}=12.7$ Hz, 1H, C<u>H</u>₂). ¹³C NMR (75 MHz, CDCl₃) $\delta = 167.26$, 152.16, 150.23 (dd, ¹ $J_{FC}=249.0$, 12.8 Hz), 149.77 (dd, ¹ $J_{FC}=248.9$, 12.7 Hz), 141.30-140.18 (m), 137.48, 135.90, 135.03, 130.15, 129.03, 128.69, 125.57 (d, J= 16.1 Hz), 122.07 (dd, J=6.0, 3.2 Hz), 117.48 (d, ² $J_{FC}=17.4$ Hz), 115.23 (d, ² $J_{FC}=17.8$ Hz), 59.27 (<u>C</u>H), 37.36 (<u>C</u>H₂). MS (ESI) *m*/*z*: 385.7 (M)⁺. Elemental analysis for C₂₁H₁₄ClF₂NS: C, 65.37; H, 3.66; N, 3.63; S, 8.31; found: C, 65.29; H, 3.58; N, 3.50; S, 8.23.

2-(3,4-difluorophenyl)-4-(4-fluorophenyl)-2,3-dihydrobenzo[b][1,4]thiazepine (4d)

Yellow solid, Yield: 89 %, M.P. = 143-145 °C, IR (v_{max}/cm^{-1}) : 2905 (C-H), 1601 (C=N), 1311 (C-N), 683 (C-S-C). ¹H NMR (300 MHz, CDCl₃) δ = 8.12- 7.92 (m, 2H, Ar-<u>H</u>), 7.59 (d, *J*= 7.6 Hz, 1H, Ar-<u>H</u>), 7.48 (dd, *J*= 11.0, 4.3 Hz, 1H, Ar-<u>H</u>), 7.29 (d, *J*= 7.8 Hz, 1H, Ar-<u>H</u>), 7.22- 6.88 (m, 6H, Ar-<u>H</u>), 4.89 (dd, J_{ax} = 12.4, J_{ab} = 4.8 Hz, 1H, C<u>H</u>), 3.23 (dd, J_{bx} = 13.0, J_{ab} = 4.8 Hz, 1H, C<u>H</u>₂), 2.96 (t, J_{ab} = 12.7 Hz, 1H, C<u>H</u>₂). ¹³C NMR (75 MHz, CDCl₃) δ = 167.21, 164.76 (d, ¹ J_{FC} = 252.3 Hz), 152.25, 150.23 (dd, ¹ J_{FC} = 249.3, 12.8 Hz), 149.76 (dd, ¹ J_{FC} = 248.9, 12.7 Hz), 141.87- 139.82 (m), 135.01, 133.71 (d, *J*= 3.1 Hz), 130.14, 129.55 (d, ³ J_{FC} = 8.7 Hz), 125.50 (d, ³ J_{FC} = 8.6 Hz), 122.08 (dd, *J*= 7.2, 4.5 Hz), 117.46 (d, ² J_{FC} =17.3 Hz), 115.84 (d, *J*= 21.8 Hz), 115.25 (d, ² J_{FC} = 17.8 Hz), 59.21 (<u>C</u>H), 37.42 (<u>C</u>H₂). MS (ESI) *m/z*: 370.4 (M+1) ⁺. Elemental analysis for C₂₁H₁₄F₃NS: C, 68.28; H, 3.82; N, 3.79; S, 8.68; found: C, 68.20; H, 3.75; N, 3.70; S, 8.52.

4-(4-bromophenyl)-2-(3,4-difluorophenyl)-2,3-dihydrobenzo[b][1,4]thiazepine (4e)

Yellow solid, Yield: 90 %, M.P. = 164-166 °C, IR (v_{max} /cm⁻¹): 2901 (C-H), 1604 (C=N),1320 (C-N), 684 (C-S-C). ¹H NMR (300 MHz, CDCl₃) δ = 7.89 (d, J= 8.3 Hz, 2H, Ar-<u>H</u>), 7.66-7.54 (m, 3H, Ar-<u>H</u>), 7.48 (t, J= 7.6 Hz, 1H, Ar-<u>H</u>), 7.29 (d, J= 7.8 Hz, 1H, Ar-<u>H</u>), 7.21-6.91 (m, 4H, Ar-<u>H</u>), 4.88 (dd, J_{ax} = 12.4, J_{ab} = 4.6 Hz, 1H, C<u>H</u>), 3.21 (dd, J_{bx} = 13.0, J_{ab} = 4.8 Hz, 1H, C<u>H</u>₂), 2.95 (t, J_{ab} = 12.7 Hz, 1H, C<u>H</u>₂). ¹³C NMR (75 MHz, CDCl₃) δ = 167.27, 152.24, 150.28 (dd, ¹ J_{FC} = 248.9, 12.6 Hz), 149.82 (dd, ¹ J_{FC} = 248.5, 12.7 Hz), 140.75, 136.50, 134.97, 131.98, 130.08, 128.88, 125.92, 125.53 (d, ³ J_{FC} =11.1 Hz), 122.09, 117.44 (d, ² J_{FC} = 17.2 Hz), 115.26 (d, ² J_{FC} =17.9 Hz), 59.33 (<u>C</u>H), 37.31 (<u>C</u>H₂). MS (ESI) *m/z*: 430.2 (M+1)⁺. Elemental analysis for C₂₁H₁₄BrF₂NS: C, 58.62; H, 3.28; N, 3.26; S, 7.45; found: C, 58.40; H, 3.25; N, 3.08; S, 7.30.

2-(3,4-difluorophenyl)-4-(4-methoxyphenyl)-2,3-dihydro benzo[b][1,4]thiazepine (4f)

Yellow solid, Yield: 92 %, M. P.= 137-139 °C, IR (v_{max}/cm^{-1}): 2844 (C-H), 1595 (C=N), 1322 (C-N), 684 (C-S-C). ¹H NMR (300 MHz, CDCl₃) δ = 8.00 (d, J= 8.9 Hz, 2H, Ar-<u>H</u>), 7.58 (dd, J= 7.7, 1.2 Hz, 1H, Ar-<u>H</u>), 7.47 (td, J= 7.8, 1.4 Hz, 1H, Ar-<u>H</u>), 7.29 (dd, J= 7.9, 1.2 Hz, 1H, Ar-<u>H</u>), 7.20- 7.06 (m, 3H, Ar-<u>H</u>), 7.06- 6.94 (m, 3H, Ar-<u>H</u>), 4.89 (dd, J_{ax} = 12.4, J_{ab} = 4.7 Hz, 1H, C<u>H</u>), 3.87 (d, J= 6.6 Hz, 3H, OC<u>H</u>₃), 3.25 (dd, J_{bx} = 12.9, J_{ab} = 4.8 Hz, 1H, C<u>H</u>₂), 2.95 (t, J_{ab} = 12.7 Hz, 1H, C<u>H</u>₂). ¹³C NMR (75 MHz, CDCl₃) δ = 167.65, 162.22, 152.64, 150.23 (dd, ¹ J_{FC} = 251.1, 10.9 Hz), 149.71 (dd, ¹ J_{FC} = 248.7, 12.7 Hz), 141.15 (d, ⁴ J_{FC} = 4.3 Hz), 141.09 (d, ⁴ J_{FC} = 4.6 Hz), 134.95, 130.05, 129.13, 125.43, 125.16, 122.12 (d, ³ J_{FC} = 9.5 Hz), 122.04, 117.41 (d, ² J_{FC} = 17.1 Hz), 115.25 (d, ² J_{FC} = 17.7 Hz), 114.14, 59.18 (<u>C</u>H), 55.47 (O<u>C</u>H₃), 37.26 (<u>C</u>H₂).MS (ESI) *m/z*: 382.8 (M+1) ⁺. Elemental analysis for C₂₂H₁₇F₂NOS: C, 69.27; H, 4.49; N, 3.67; S, 8.40; found: C, 69.15; H, 4.33; N, 3.59; S, 8.37.

2-(3,4-difluorophenyl)-4-(furan-2-yl)-2,3-dihydrobenzo[b][1,4]thiazepine (4g)

Yellow solid, Yield: 88 %, M.P. = 125-127 °C, IR (v_{max}/cm^{-1}): 3105 (C-H), 1605 (C=N), 1319 (C-N), 681 (C-S-C). ¹H NMR (300 MHz, CDCl₃) δ = 7.66-7.57 (m, 2H, Ar-<u>H</u>), 7.54-7.43 (m, 1H, Ar-<u>H</u>), 7.37-7.30 (m, 1H, Ar-<u>H</u>), 7.22- 6.99 (m, 5H, Ar-<u>H</u>), 6.68- 6.50 (m, 1H, Ar-<u>H</u>), 4.96 (dd, J_{ax} = 11.8, J_{ab} = 5.1 Hz, 1H, C<u>H</u>), 3.19 (dd, J_{bx} = 12.9, J_{ab} = 5.1 Hz, 1H, C<u>H</u>₂), 2.88 (t, J_{ab} = 12.4 Hz, 1H, C<u>H</u>₂). ¹³C NMR (75 MHz, CDCl₃) δ = 159.26, 152.45, 150.29 (d, ¹ J_{FC} = 249.2 Hz), 149.71 (dd, ¹ J_{FC} = 248.7, 12.7 Hz), 145.75, 140.80, 135.04, 130.14, 125.74 (d, J= 23.6 Hz), 122.64, 122.20 (dd, J= 6.3, 3.6 Hz), 117.40 (d, ² J_{FC} = 17.3 Hz), 115.36 (d, ² J_{FC} = 17.9 Hz), 113.93, 112.48, 59.38 (CH), 37.52 (CH₂). MS (ESI) *m/z*: 342.1 (M+1)⁺. Elemental analysis for C₁₉H₁₃F₂NOS: C, 66.85; H, 3.84; N, 4.10; S, 9.39; found: C, 66.82; H, 3.75; N, 4.06; S, 9.25.

2-(3,4-difluorophenyl)-4-(thiophen-2-yl)-2,3-dihydrobenzo[b][1,4]thiazepine (4h)

Yellow solid, Yield: 87 %, M.P. = 149-151 °C, IR (v_{max}/cm^{-1}): 2917 (C-H), 1599 (C=N),1322 (C-N), 688 (C-S-C). ¹H NMR (300 MHz, CDCl₃) δ = 7.66-7.53 (m, 2H, Ar-<u>H</u>), 7.53- 7.40 (m, 2H, Ar-<u>H</u>), 7.37-7.27 (m, 1H, Ar-<u>H</u>), 7.24-6.99 (m, 5H, Ar-<u>H</u>), 4.99 (dd, J_{ax} = 11.9, J_{ab} = 5.0 Hz, 1H, C<u>H</u>), 3.23 (dd, J_{bx} = 13.0, J_{ab} = 5.0 Hz, 1H, C<u>H</u>₂), 2.99 (t, J_{ab} = 12.5 Hz, 1H, C<u>H</u>₂). ¹³C NMR (75 MHz, CDCl₃) δ = 163.24, 151.53, 150.12 (d, ¹ J_{FC} = 242.5 Hz), 140.80, 134.96, 131.46, 130.10, 128.83, 127.91, 125.75, 125.57, 122.62, 122.12, 117.45 (d, ² J_{FC} = 17.4 Hz), 115.37 (d, ² J_{FC} = 17.9 Hz), 59.18 (<u>C</u>H), 38.46 (<u>C</u>H₂). MS (ESI) *m/z*: 359.7 (M+2)⁺. Elemental analysis for C₁₉H₁₃F₂NS₂: C, 63.85; H, 3.67; N, 3.92; S, 17.94; found: C, 63.75; H, 3.56; N, 3.88; S, 17.81.

Fig. S-1. FTIR Spectrum of Compound 4a

Fig. S-3. $^{13}\text{C-NMR}$ spectrum of compound $4a~(75~\text{MHz},\text{CDCl}_3)$

Fig. S-4. Mass spectrum of compound 4a

Fig. S-5. FTIR Spectrum of Compound 4b

S336 BHABAL et al. 7.941 7.597 7.572 7.572 7.572 7.572 7.572 7.549 7.249 7.280 7.280 7.280 7.280 7.280 7.280 7.280 7.2013 7.037 7.037 7.037 7.037 7.016 -4.923 -4.907 -4.881 -4.885 -2.290-2.91-2.91-2.91-2.91-2.906-2.906-2.906Н₃С 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 fl (ppm) l 0.944 2.504 3.944 1.05-3.04 1.89--66.0 1.00-5.0 4.5 4.0 f1 (ppm) 7.5 2.5 9.5 . 9.0 8.5 8.0 7.0 6.5 6.0 5.5 3.5 3.0 2.0 1.5 1.0 0.5 0.0 -0.5 Fig. S-6. ¹H-NMR spectrum of compound 4b (300 MHz, CDCl₃) 152.523 151.953 145.783 145.783 145.783 145.783 145.783 144.67 141.119 141.129 141.119 141.129 141.119 141.129 141.119 141.129 142.129 168.334 15.287 15.354 15.120 — 59.243 -21.472-37.418H₃C - 151.953 - 151.783 - 151.783 - 151.448 - 151.280 115.354115.1204b 152 151 150 149 148 147 f1 (ppm) 116 114 f1 (ppm) 112 . 118 100 90 f1 (ppm) 190 10 0 180 170 150 140 110 80 60 50 20 . 160 . 130 120 . 70 . 40 30

S337

Fig. S-13. FTIR spectrum of Compound 4d

Available on line at www.shd.org.rs/JSCS/

S340 BHABAL et al. 7,504 7,578 7,578 7,578 7,503 7,503 7,503 7,157 7,157 7,157 7,118 8.052 8.045 8.034 8.023 8.005 3.259 3.243 3.216 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 f1(ppm) 4d 2.01-H66:0 1.00H 0.984 1.01 1.07 1.07 1.07 Hee.0 8.0 3.0 7.5 8.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 f1 (ppm) 3.5 2.5 2.0 1.5 1.0 0.5 0.0 Fig. S-14. ¹H-NMR spectrum of compound 4d (300 MHz, CDCl₃) 152.253 151.969 151.329 151.329 151.329 151.329 140.851 140.851 140.87 133.731 133.731 133.731 133.731 133.731 133.731 133.731 133.731 133.731 133.731 133.731 133.731 133.731 112.555 123.7559 -167.209 -166.431 -163.088 — 37.424 ~ 117.578 ~ 117.348 ~ 115.985 - 115.697 - 115.364 ~ 115.128 イト151.969 イ151.798 イ151.798 イ151.329 ШIJ 4d 150 f1 (ppm) 152 151 149 117 116 f1 (ppm) 118 115 180 120 110 100 90 80 f1 (ppm) 70 60 50 170 160 150 140 130 40 30 20 10 ò

Fig. S-16. Mass spectrum of compound 4d

Fig. S-17. FTIR spectrum of compound 4e

Available on line at www.shd.org.rs/JSCS/

Fig. S-18. ¹H-NMR spectrum of compound 4e (300 MHz, CDCl₃)

Fig. S-28. Mass spectrum of compound 4g

Fig. S-31. ¹³C-NMR spectrum of compound 4h (75 MHz, CDCl₃)

BHABAL et al.

Anticancer activity

Table S-L	Control grov	vth against	human lung	cancer cell line A549
10010 0 10	control gro,	our engeminer	II WILLIOULL I WILLS	

	Experiment 1					Experiment 2				Experiment 3		
Commonweak		Control growth, %										
Compound	10	20	40	80	10	20	40	80	10	20	40	80
				1	Drug c	oncent	ration,	μg ml-	1			
4a	79.8	69.7	54.9	28.2	89.9	80.8	72.7	35.1	96.7	91.9	85.1	46.2
4b	92.5	80.7	46.9	11.5	75.7	56.6	27.3	8.1	80.2	71.5	30.5	10.1
4c	59.7	24.6	3.6	-10.4	71.3	30.3	4.8	-18.1	84.4	41.1	9.3	-24.6
4d	51.2	18.3	1.7	-42.3	36.1	10.9	0.9	-30.7	24.6	9.5	3.1	-19.4
4 e	72.5	52.2	48.5	1.6	65.4	37.1	33.7	1.2	81.4	67.9	58.2	0.5
4f	91.3	86.9	61.2	-12.2	87.5	78.6	55.1	-5.8	78.6	69.7	37.3	-1.5
4g	26.3	13.9	-11.2	-43	12.5	4.2	-3.5	-36	5.9	1.4	-1.2	-11
4h	40.1	24.4	15.8	-12.7	18.9	10.8	5.4	-5.8	10.3	6.2	2.5	-1.9
ADR	12.6	0.7	-16.9	-50	8.5	1.0	-12.3	-41	4.1	1.6	-6.2	-35

T 11 C II A	. 1	.1	• •	1	1		11	1.		
	and control	arowth	0.00110.01	humon	lung	concor	CALL	11100	^ >	•/IU
-1 able o-11. Ave		Prowin	against	nunan	TUTE	Callee	UCII		A.)	147
		8								

_		Average cont			
Compound	10	20	40	80	$= GI_{50} / \mu g m^2$
		Drug concenti	ration, µg ml ⁻¹		I
4 a	88.8	80.8	70.9	36.5	69.23
4b	82.8	69.6	34.9	9.9	27.88
4c	71.8	32.0	5.9	-17.7	<10
4d	37.3	12.9	1.9	-30.8	<10
4e	73.1	52.4	46.8	1.1	22.07
4f	85.8	78.4	51.2	-6.5	32.33
4g	14.9	6.5	-5.3	-30	<10
4h	23.1	13.8	7.9	-6.8	<10
ADR	8.4	1.1	-11.8	-42	<10

Table S-III. Control growth against human breast cancer cell line MCF-7

	Experiment 1				Experiment 2				Experiment 3			
Commound					С	ontrol g	growth,	%				
Compound	10	20	40	80	10	20	40	80	10	20	40	80
]	Drug c	oncent	ration,	μg ml ⁻¹				
4 a	109.9	91.1	70.1	55.8	95.7	82.6	58.6	42.3	89.9	70.5	46.2	30.6
4b	95.6	93.8	83.1	37.1	75.9	74.5	70.2	14.1	61.6	60.9	55.2	8.8
4c	60.7	26.3	11.5	-18.9	52.4	16.3	5.7	-11.1	24.9	6.9	2.3	-7.2
4d	49.8	18.9	-9.2	-56.2	25.1	11.9	-3.8	-41.1	11.2	7.6	-1.1	-35.6
4 e	65.3	32.4	17.3	11.7	50.1	15.2	11.2	7.5	42.4	9.7	4.2	2.1
4f	82.5	70.2	64.5	51.5	62.2	55.4	50.1	42.2	50.9	42.1	36.3	30.5
4g	42.7	30.1	27.7	-15.2	29.5	16.4	14.5	-6.7	12.1	9.3	4.9	-2.4
4h	51.4	31.4	10.5	-41.2	42.6	19.9	4.3	-26.4	15.2	10.8	1.1	-14.6
ADR	14.3	1.6	-15.3	-43.4	8.3	1.1	-11.5	-29.1	5.3	0.9	-7.1	-17.8

_		_			
Compound	10	20	40	80	$GI_{50}/\mu g m l^{-1}$
		Drug concentr	ration, μg ml ⁻¹		
4a	98.5	81.4	58.3	42.9	68.59
4b	77.7	76.4	69.5	20	48.23
4c	46	16.5	6.5	-12.4	<10
4d	28.7	12.8	-4.7	-44.3	<10
4 e	52.6	19.1	10.9	7.1	<10
4 f	83.6	51.8	47.9	37.3	35.05
4g	28.1	18.6	15.7	-8.1	<10
4h	36.4	20.7	5.3	-27.4	<10
ADR	9.3	1.2	-11.3	-30.1	<10

Table S-IV. Average control growth against human breast cancer cell line MCF-7

Table S-V. Control growth against human liver cancer cell line HEPG2

		Experi	ment 1		Experiment 2				Experiment 3			
Commound					C	ontrol g	growth,	%				
Compound	10	20	40	80	10	20	40	80	10	20	40	80
]	Drug c	oncent	ration,	µg ml⁻¹	l			
4 a	95.4	88.3	70.7	49.3	87.3	79.1	56.9	41.1	76.2	64.5	45.8	30.2
4b	89.8	69.7	60.1	52.9	77.8	57.2	41.6	39.5	70.9	37.8	23.7	22.2
4c	69.1	46.5	20.3	-17.2	52.9	31.6	12.1	-10.2	45.7	24.2	5.4	-4.1
4d	30.6	16.2	-50.7	-48.1	20.1	6.7	-38.5	-34.8	16.5	3.8	-29.9	-14.9
4 e	94.2	65.5	62.1	49.5	82.7	50.6	51.8	36.5	73.9	39.3	29.8	25.9
4f	79.6	70.2	46.2	-11.2	68.4	61.1	32.1	-8.6	57.5	31.6	14.1	-2.1
4g	59.2	40.4	21.9	-36.3	48.6	31.1	13.3	-27.8	34.4	19.7	8.9	-16.3
4h	21.8	9.1	-12.3	1.1	17.3	7.2	-10.1	0.7	10.1	2.3	-6.1	2.1
ADR	11.9	9.1	-5.3	-30.9	8.7	5.2	-3.2	-21.6	4.3	1.3	-1.4	-10.2

Table S-VI. Average control growth against human liver cancer cell line HEPG2

_	Average control growth, %						
Compound	10	20	40	80	GI ₅₀ ∕µg ml⁻¹		
		Drug concent	ration, µg ml ⁻¹				
4 a	86.3	77.3	57.8	40.2	57.69		
4b	79.5	54.9	41.8	38.2	32.6		
4c	55.9	34.1	12.6	-10.5	<10		
4d	22.4	8.9	-39.7	-32.6	<10		
4 e	68.5	54.3	30.8	-7.3	16.98		
4f	65.2	55.9	50.3	41.4	33.46		
4g	47.4	30.4	14.7	-26.8	<10		
4h	16.4	6.2	-9.5	1.3	<10		
ADR	8.3	5.2	-3.3	-20.9	<10		

BHABAL et al.

Experiment 1 **Experiment 3** Experiment 2 Control growth, % Compound 10 40 20 40 10 20 40 80 20 80 10 80 Drug concentration, µg ml⁻¹ 4a 109.2 90.5 88.7 60.1 89.8 69.8 61.8 33.9 100.7 81.2 70.9 50.3 32.9 21.1 4b 90.2 63.2 51.5 42.8 74.9 47.9 46.1 30.9 67.1 36.2 4c 45.3 41.1 31 22.4 36.4 24.7 19 14.2 25.1 13.4 10 5.1 4d 40.2 35.6 4.2 -12.4 25.2 20.4 2.8 -9.1 17.411.2 1.1 -3.1 4e 70.2 31.8 9.4 -39.4 54.1 23.5 7.2 -27.2 46.1 11.3 3.5 -18.6 4f 58.1 52 43.5 45.9 41 29.2 7.2 39.1 27 2.3 11.8 17.6 39.1 22.8 4g 32.4 15.2 30.4 20.5 11.1 8.9 20.2 13.7 6.3 5.6 59.6 -11.2 -7.9 -2.2 4h 40.9 15.5 45.8 32.6 11.7 37.7 16.5 3.1 13.6 -12.1 -28.8 9.2 0.7 -7.5 -22.1 5.1 1.8 -5.3 ADR -11.8 1.1

Table S-VII. Control growth against human prostate cancer cell line PC-3

Table S-VIII. Average control growth against human prostate cancer cell line PC-3

			_		
Compound	10	20	40	80	GI ₅₀ ∕µg ml ⁻¹
		Drug concenti	ration, μg ml ⁻¹		
4 a	99.9	80.5	73.8	48.1	92.93
4b	77.4	49.1	43.5	31.6	28.19
4c	35.6	26.4	20	13.9	<10
4d	27.6	22.4	2.7	-8.2	<10
4e	56.8	22.2	6.7	-28.4	<10
4f	47.7	40	30.1	7.1	11.59
4g	29.9	22.2	13.4	9.9	<10
4h	47.7	30	10.1	-7.1	<10
ADR	9.3	1.2	-8.3	-20.9	<10

Antibacterial activity

Gram positive

S352

Fig. S-33. Antibacterial activity of synthesized compounds against gram positive strains

Fig. S-34. Antibacterial activity of synthesized compounds against gram negative strains

Available on line at www.shd.org.rs/JSCS/