

J. Serb. Chem. Soc. 87 (10) S360–S378 (2022)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Synthesis of some benzylidene thiosemicarbazide derivatives and evaluation of their cytotoxicity on U87, MCF-7, A549, 3T3 and HUVEC cell lines

TOUBA ESLAMINEJAD¹, YAGHOUB POURSHOJAEI^{1,2}, MAHMOOD NAGHIZADEH², HODA ESLAMI², MOHAMMAD DANESHPAJOUH² and ABDOLREZA HASSANZADEH^{1,2*}

¹Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran and ²Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran

J. Serb. Chem. Soc. 87 (10) (2022) 1125–1142

EXPERIMENTAL DETAILS

The crude products obtained during the synthesis reactions were first recrystallized from ethanol and then their purity was checked by a TLC-Grade silica gel-G/UV 254 nm plate using EtOAc/n-hexane (1:2) as eluent. Melting points were determined on an electrothermal IA9100 melting point apparatus and were not corrected. In the case of known compounds, their melting points were compared with the reference and their IR spectra was analysed for identification purpose. The IR spectra were recorded on an FT-IR Tensor 27 infrared spectrophotometer (Bruker) using KBr as a matrix. For the novel compounds, in addition to IR spectra, ¹H & ¹3C NMR spectra were also recorded. ¹H NMR and ¹³C NMR spectra were taken by an FT-NMR Bruker Avance Ultra Shield Spectrometer (300 and 75 MHz in frequencies for ¹H and ¹³C, respectively) using DMSO-d₆ as solvent and as the internal standard. Chemical shifts are expressed in ppm (δ / ppm) values and coupling constants in Hz (J / Hz).

General procedures for the synthesis of compounds 1-13

To a solution of 0.1 g NaOH in 5 mL water, 1 mmol corresponding aldehyde was added under stirring. Then 1 mmol thiosemicarbazide was gradually added to the solution and under room temperature the mixture was stirred overnight. Then 5 mL ethyl alcohol was poured into the mixture, and it was refluxed for 1 h. After completion of the reaction, monitored by TLC using EtOAc/n-hexane (1:2) as eluent, the reaction mixture was filtered off to separate precipitate. Next, the precipitate was recrystallized from boiling ethanol to afford pure crystalline. The structure of novel compounds was confirmed by application of spectroscopic methods.

S360

^{*} Corresponding author. E-mail: a_hassanzadeh@kmu.ac.ir

(E)-1-benzylidenethiosemicarbazide (1):

Yield 75 %; m.p. 160-161 °C (literature data: 162-165 °C^{1,2}); IR (KBr) v_{max} (cm⁻¹): 3423 (NH), 3253, 3156 (NH₂), 1590 (C=N), 1299 (C=S).

Fig S-1. IR spectrum of compound 1

(E)-1-(4-chlorobenzylidene)thiosemicarbazide (compound 2)

Yield 90 %; m.p. 222-225 °C (literature data: 217-220 °C³); IR (KBr) v_{max} (cm⁻¹): 3436 (NH), 3280, 3164 (NH₂), 1600 (C=N), 1281 (C=S), 815 (C-Cl).

 $(E) \hbox{-} 1 \hbox{-} (4 \hbox{-} (4 \hbox{-} chlorobenzyloxy) benzylidene) this semicarbazide (compound 3)$

Yield 85 %; m.p. 194-195 °C (literature data: 194 °C⁴); IR (KBr) v_{max} (cm⁻¹): 3419 (NH), 3288, 3165 (NH₂), 1594 (C=N), 1231 (C=S). ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 11.36 (1H, s, NH), 8.15 (1H, s, NH), 8.02 (1H, s, NH), 7.95 (1H, s, CH), 7.77 (2H, d, J = 9 Hz, 2CHAr), 7.52-7.45 (4H, m, 4CHAr), 7.04 (2H, d, J = 9 Hz, 2CHAr), 5.16 (2H, s, OCH₂). ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 178.1, 160.0, 142.5, 136.3, 132.9, 130.0, 129.3, 128.9, 127.5, 115.4, 68.9 (CH₂).

(E)-1-(3-(4-chlorobenzyloxy)benzylidene)thiosemicarbazide (compound 4)

Yield 85%; m.p. 165-167 °C (literature data: 160 °C⁵); IR (KBr) v_{max} (cm⁻¹): 3429 (NH), 3252, 3155 (NH₂), 1610(C=N), 1269 (C=S). ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 11.47 (1H, s, NH), 8.26 (1H, s, NH), 8.1 (1H, s, NH), 8.04 (1H,s, CHAr), 7.6 (1H, s, CHAr), 7.54-7.46 (4H, m, 4CHAr), 7.36-7.27 (2H, m, 2CHAr), 7.06-7.03(1H, m, CHAr), 5.17(2H, s, OCH₂). ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 178.4, 158.9, 142.4, 136.5, 136.1, 132.9, 130.2, 130.1, 128.9, 121.5, 117.4, 112.2, 68.9 (CH₂).

(E)-1-(4-(dimethylamino)benzylidene)thiosemicarbazide (compound 5)

Yield 80 %; m.p. 209-212 °C (literature data: 210-211 °C^{6,7}); IR (KBr) v_{max} (cm⁻¹): 3378 (NH), 3257, 3157 (NH₂), 1598 (C=N), 1229 (C=S).

(E)-1-(4-morpholinobenzylidene)thiosemicarbazide (compound **6**) Viald 80 % m n 210 212 °C (decomp.) (literature data: 208 5 °C with

Yield 80 %; m.p 210-213 °C (decomp.) (literature data: 208.5 °C with decomposition⁸); IR (KBr) v_{max} (cm⁻¹): 3375 (NH), 3266, 3157 (NH₂), 1605 (C=N), 1230 (C=S).

Fig S-12. IR spectrum of compound 6

ESLAMINEJAD et al.

(E)-1-(4-(4-bromobenzyloxy)benzylidene)thiosemicarbazide (compound 7)

S368

Yield 85 %; m.p. 199-201 °C (literature data: 187 °C⁴); IR (KBr) v_{max} (cm⁻¹): 3419 (NH), 3289, 3161 (NH₂), 1601 (C=N), 1583, 1244 (C=S). ¹H NMR (300 MHz, DMSO-d6) δ (ppm): 11.36 (1H, s, NH), 8.15 (H, s, NH), 8.02 (1H, s, CH), 9.95 (1H, s, NH), 7.77 (2H, d, J = 9 Hz, 2CHAr), 7.61 (2H, d, J = 9 Hz, 2CHAr), 7.44 (2H, d, J = 9 Hz, 2CHAr), 7.05 (2H, d, J = 9 Hz, 2CHAr), 5.15 (2H, s, OCH₂). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 178.5, 158.9, 142.5, 136.9, 136.2, 131.8, 130.5, 130.3, 121.9, 117.4, 112.3, 69.0 (CH₂).

Fig S-14. 1 H NMR spectrum of compound 7

(E)-1-(3-(4-bromobenzyloxy)benzylidene)thiosemicarbazide (compound 8)

Yield 85%; m.p. 171-173.5 °C (literature data: 165 °C⁵); IR (KBr) v_{max} (cm⁻¹): 3393 (NH), 3242, 3160 (NH₂), 1600 (C=N), 1262 (C=S). ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 11.48 (1H, s, NH), 8.27 (H, s, NH), 8.10 (1H, s, NH), 8.04 (1H, s, CH), 7.61 (3H, d, J = 6 Hz, 3CHAr), 7.46 (2H, d, J = 9 Hz, 2CHAr), 7.35 (2H, d, J = 6 Hz, 2CHAr), 7.32 (2H, m, 2CHAr), 7.04 (1H, m, CHAr), 5.15 (2H, s, OCH₂). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 178.1, 160.0, 142.6, 136.8, 131.9, 130.3, 129.4, 127.9, 121.5, 115.9, 68.9 (CH₂).

Fig S-16. IR spectrum of compound 8

(E)-1-(4-(2-morpholinoethoxy)benzylidene)thiosemicarbazide (compound 9)

Yield 80 %; m.p. 216-217.4 °C (literature data: 216-217 °C⁹); IR (KBr) v_{max} (cm⁻¹): 3438 (NH), 3204, 3113 (NH₂), 1599 (C=N), 1243 (C=S).

(E)-1-(4-(3-chlorobenzyloxy)-3-methoxybenzylidene)thiosemicarbazide (compound 10)

Yield 85 %; m.p. 174-176 °C; IR (KBr) v_{max} (cm⁻¹): 3421 (NH), 3308, 3144 (NH₂), 1599 (C=N), 1268 (C=S). ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 11.35 (1H, s, NH), 8.19 (H, s, NH), 8.05 (1H, s, NH), 7.96 (1H, s, CH), 7.55 (1H, d, J = 1.8 Hz, 1CHAr), 7.51 (1H, t, J = 2.1 Hz, 1CHAr), 7.40-7.44 (3H, m, 3CHAr), 7.13 (1H, dd, J = 1.8, 8.3 Hz, 1CHAr), 7.03 (1H, d, J = 8.4 Hz, 1CHAr), 5.14 (2H, s, OCH₂), 3.84 (3H, s, OCH₃). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 177.6, 149.4, 149.2, 142,4, 139.5, 133.1, 130.4, 127.9, 127.5, 126.4, 122.0, 68.9 (CH₂), 55.8 (CH₃).

(E)-1-(4-(piperidin-1-yl)benzylidene)thiosemicarbazide (compound 11)

Yield 95 %; m.p. 99-101 °C (literature data: 105-106 °C¹⁰); IR (KBr) v_{max} (cm⁻¹): 3371 (NH), 3266, 3160 (NH₂), 1604 (C=N), 1530, 1227 (C=S).

ESLAMINEJAD et al.

(E)-1-(4-(2-(piperidin-1-yl)ethoxy)benzylidene)thiosemicarbazide (compound 12)

S374

Yield 90 %; m.p. 166.166.6 °C; IR (KBr) v_{max} (cm⁻¹): 3442 (NH), 3320, 3159 (NH₂), 1607 (C=N), 1247 (C=S). ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 11.33 (1H, s, NH), 8.12 (1H, s, NH), 8.01 (H, s, CH), 7.93 (H, s, NH), 7.74 (2H, d, J = 9 Hz, 2CHAr), 6.98 (2H, d, J = 9 Hz, 2CHAr), 4.11 (2H, t, J = 6 Hz, OCH₂), 2.66 (2H, t, J = 6 Hz, NCH₂), 2.43 (4H, t, J = 6 Hz, CH₂NCH₂), 1.5 (4H, quint, J = 6 Hz, CH₂), 1.40 (2H, t, J = 6 Hz, CH₂). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 178.1, 160.4, 142.9, 129.4, 127.2, 115.2, 66.2, 57.8, 54.9, 26.1, 24.4.

Fig S-26. ¹³C NMR spectrum of compound 12

(E)-1-(4-(3-(piperidin-1-yl)propoxy)benzylidene)thiosemicarbazide (compound 13)

Yield 90%; m.p. 137-139 °C (decomp.); IR (KBr) v_{max} (cm⁻¹): 3476 (NH), 3302, 3160 (NH₂), 1602 (C=N), 1253 (C=S). ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 11.33 (1H, s, NH), 8.13 (H, s, NH), 8.02 (1H, s, NH), 7.92 (1H, s, CH), 7.73 (2H, d, J = 9 Hz, 2CHAr), 6.97 (2H, d, J = 9 Hz, 2CHAr), 4.04 (2H, t, J = 6 Hz, OCH₂), 2.39 (2H, t, J = 6 Hz, CH₂), 2.34 (2H, t, CH₂), 1.87 (2H, quint, J = 6 Hz, CH₂), 1.52-1.39 (6H, m, 3CH₂). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 178.0, 160.5, 142.7, 129.3, 127.1, 115.0, 66.5, 55.5, 54.5, 26.6, 26.0, 24.6.

Fig S-27. IR spectrum of compound 13

REFERENCES

- 1. H. R. Fatondji, S. Kpoviessi, F. Gbaguidi, J. Bero, V. Hannaert, J. Quetin-Leclercq, J. Poupaert, M. Moudachirou, G. C. Accrombessi, Med. Chem. Res. 22 (2013) 2151 (https://doi.org/10.1007/s00044-012-0208-6)
- 2. N. H. Nam, T. L. Huong, T. M. Dung do, P. T. Dung, D .T. Oanh, S. H. Park, K. Kim, B. W. Han, J. Yun, J. S. Kang, Y. Kim, S. B. Han, J. Enzyme Inhib. Med. Chem. 29 (2014) 611 (https://doi.org/10.3109/14756366.2013.832238)
- 3. J. B. da Silva, D. M. Navarro, A. G. da Silva, G. K. Santos, K. A. Dutra, D. R. Moreira, M. N. Ramos, J. W. Espíndola, A. D. de Oliveira, D. J. Brondani, A. C. Leite, M. Z. Hernandes, V. R. Pereira, L. F. da Rocha, M. C. de Castro, B. C. de Oliveira, Q. Lan, K. M. Jr. Merz, Eur. J. Med. Chem. 100 (2015) 162 (https://doi.org/10.1016/j.ejmech.2015.04.061)
- 4. Ng. Ph. Buu-Hoi, M. Welsch, G. Dechamps, H. Le. Bihan, F. Binon, Ng. D. Xuong, J. Org. Chem. 18 (1953) 121 (https://doi.org/10.1021/jo01130a001)
- Ng. Ph. Buu-Hoi, Ng. D. Xuong, F. Binon, J. Chem. Soc. (Resumed) 1956, 713 5. (https://doi.org/10.1039/JR9560000713)
- M. E. Abd El-Fattah, Indian. J. Chem.- Sec. B. 45B (2006) 2523 6. (http://nopr.niscair.res.in/bitstream/123456789/6764/1/IJCB%2045B%2811%29%2025 2<u>3-2533.pdf</u>)
- 7. R. Wilson, G. R. Revankar, R. L. Tolman, J. Med. Chem. 17 (1974) 760 (https://doi.org/10.1021/jm00253a025

Available on line at www.shd.org.rs/JSCS/

S377

ESLAMINEJAD et al.

- 8. N.Ö. Can, D. Osmaniye, S. Levent, B. N. Sağlik, B. Korkut, Ö. Atli, Y. Özkay, Z. A. Kaplancikli, Eur. J. Med. Chem. 144 (2018) 68 (https://doi.org/10.1016/j.ejmech.2017.12.013) 9. H. D. Cossey, C. J. Sharpe, F. F. Stephens, J. Chem. Soc. (Resumed) **1963**, 4322
- (https://doi.org/10.1039/JR9630004322
- 10. M. S. A. El-Gaby, J. Chin. Chem. Soc. 51 (2004) 125 (https://doi.org/10.1002/jccs.200400020).

S378