

J. Serb. Chem. Soc. 87 (12) S450-S479 (2022)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Synthesis and biological activity of novel zingerone-thiohydantoin hybrids

KATARINA D. VIRIJEVIĆ¹, PETAR B. STANIĆ¹, JOVANA M. MUŠKINJA¹, JELENA S. KATANIĆ STANKOVIĆ¹, NIKOLA SREĆKOVIĆ², MARKO N. ŽIVANOVIĆ¹ and BILJANA M. ŠMIT^{1*}

¹University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia and ²University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovića 12, 34000 Kragujevac, Serbia

J. Serb. Chem. Soc. 87 (12) (2022) 1349–1358

SPECTRAL AND ANALYTICAL DATA

4-(3-methoxy-4-propoxyphenyl)butan-2-one (1c)

Yield: 0.947 g (80 %). IR (KBr): 2963m, 2877m, 1714s, 1589w, 1514s, 1465m, 1419m, 1363m, 1258s, 1231s, 1158m, 1138s, 1036m, 978m, 800m cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 6.74 (d, 1H, J = 8.0, H-9), 6.71 (s, 1H, H-6), 6.69 (d, 1H, J = 8.2 Hz, H-10), 3.94 (t, 2H, J = 6.8 Hz, CH₂-12), 3.84 (s, 3H, CH₃-11), 2.68-2.88 (m, 4H, CH₂-3, CH₂-4), 2.13 (s, 3H, CH₃-1), 1.84 (sext, 2H, J = 7.2 Hz, CH₂-13), 1.02 (t, 3H, J = 7.5 Hz, CH₃-14). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 208.01 (C2), 149.14 (C7), 146.71 (C8), 133.44 (C5), 119.94 (C10), 112.99 (C9), 112.02 (C6), 70.42 (C12), 55.78 (C11), 45.24 (C4), 29.94 (C3), 29.20 (C1), 22.34 (C13), 10.28 (C14).

4-(4-isopropoxy-3-methoxyphenyl)butan-2-one (1d)

Yield: 0.926 g (78 %). IR (KBr): 2975m, 2933m, 1714s, 1587w, 1510s, 1465m, 1451m, 1419m, 1369m, 1259s, 1229m, 1157m, 1138m, 1110m, 1035m, 955w, 806w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 6.65-6.83 (m, 3H, H-6, H-9, H-10), 4.46 (sept, 1H, J = 6.0 Hz, CH-12), 3.83 (s, 3H, CH₃-11), 2.68-2.90 (m, 4H, CH₂-3, CH₂-4), 2.14 (s, 3H, CH₃-1), 1.33 (d, 6H, J = 6.2 Hz, CH₃-13, CH₃-14). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 208.24 (C2), 150.24 (C7), 145.44 (C8), 134.02 (C5), 119.98 (C10), 116.01 (C9), 112.28 (C6), 71.45 (C12), 55.8 (C11), 45.31 (C4), 30.04 (C3), 29.30 (C1), 22.02 (C13, C14).

4-(4-butoxy-3-methoxyphenyl)butan-2-one (1e)

Yield: 1.088 g (87 %). IR (KBr): 2957m, 2935m, 2872w, 1715s, 1589m, 1514s, 1465m, 1419m, 1362m, 1257s, 1233s, 1158s, 1139s, 1034s, 972, 800m cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 6.79 (d, 1H, J = 7.8 Hz, H-9), 6.71 (s, 1H, H-6), 6.69 (d, 1H, J = 8.0 Hz, H-10), 3.98 (t, 2H, J = 6.8 Hz, CH₂-12), 3.84 (s, 3H, CH₃-11), 2.68-2.88 (m, 4H, CH₂-3, CH₂-4), 2.13 (s, 3H, CH₃-1), 1.81 (quint, 2H, J = 3.6 Hz, CH₂-13), 1.48 (sext, 2H, J = 3.7 Hz, CH₂-14), 0.96 (t, 3H, J = 7.3 Hz, CH₃-15). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 208.03 (C2),

^{*} Corresponding author. E-mail: biljana.smit@uni.kg.ac.rs

149.17 (C7), 146.78 (C8), 133.44 (C5), 119.96 (C10), 112.97 (C9), 112.04 (C6), 68.65 (C12), 55.81 (C11), 45.28 (C4), 31.14 (C3), 29.98 (C1), 29.24 (C13), 19.07 (C14), 13.74 (C15).

4-(3-methoxy-4-((2-methylallyl)oxy)phenyl)butan-2-one (1g)

Yield: 0.942 g (76 %). IR (KBr): 2938w, 1714s, 1603w, 1515s, 1452m, 1430m, 1364m, 1268s, 1235m, 1158m, 1140m, 1035m, 906w, 860w, 809w, 630w cm^{-1.1}H NMR (200 MHz, CDCl₃, δ / ppm): 6,83 (d, 1H, J = 7.8 Hz, H-9) 6.77 (s, 1H, H-6) 6.67 (d, 1H, J = 7.2 Hz, H-10), 5.07 (m, 1H, H-14), 4.96 (m, 1H, H-14), 3.86 (s, 3H, CH₃-11), 2.67-2.90 (m, 4H, CH₂-3, CH₂-4), 2.14 (s, 3H, CH₃-1), 1.82 (s, 3H, CH₃-15). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 207.85 (C2), 148.99 (C7), 146.63 (C8), 143.89 (C13), 133.99 (C5), 120.03 (C10), 114.02 (C9), 112.46 (C14), 111.04 (C6), 72.95 (C12), 56.04 (C11), 45.52 (C4), 30.08 (C3), 29.44 (C1), 19.32 (C15).

3-((4-(3,4-dimethoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (2a)

Yield: 0.439 g (68 %). IR (KBr): 3152w, 3079w, 2935m, 1722s, 1638s, 1604s, 1515s, 1452m, 1418m, 1346m, 1257s, 1158m, 1138m, 1035m, 897w, 844w, 799w, 702w, 632w, 516w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 9.98 (bs, NH, exchangeable with D₂O), 6.95 (d, 1H, J = 11.6 Hz, H-14), 6.86 (d, 1H, J = 8.4 Hz, H-15), 6.79 (s, 1H, H-11), 3.88 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 3.75 (s, 2H, CH₂-5), 2.57-2.96 (m, 4H, CH₂-8, CH₂-9), 2.03 (s, 3H, CH₃-6). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 173.02 (C2), 167.29 (C4), 160.76 (C7), 149.26 (C12), 148.90 (C13), 135.70 (C10), 127.11 (C15), 120.16 (C14), 111.49 (C11), 55.96 (C16, C17), 40.55 (C9), 33.04 (C5), 31.91 (C8), 13.34 (C6). (+)LC-HRMS (*m*/*z*): calculated for [C₁₅H₁₉O₃N₃S + H]⁺ 320.1074, observed 320.1220. Combustion analysis for C₁₅H₁₉O₃N₃S: Calculated. C 56.06, H 5.96, N 13.07; found C 56.10, H 5.98, N 13.04.

3-((4-(4-ethoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (2b)

Yield: 0.465 g (69 %). IR (KBr): 3148m, 2983m, 1724s, 1694s, 1636s, 1602s, 1515s, 1449w, 1418w, 1344m, 1255m, 1233m, 1197m, 1154m, 1137m, 1032m, 896w, 792w, 701w, 516w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 9.68 (bs, NH, exchangeable with D₂O), 6.70-6.86 (m, 3H, H-11, H-14, H-15), 3.87 (s, 3H, CH₃-16), 3.75 (s, 2H, CH₂-5), 2.55-2.93 (m, 4H, CH₂-8, CH₂-9), 2.02 (s, 3H, CH₃-6), 1.45 (t, 3H, J = 7.0 Hz, CH₃-18). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 172.95 (C2), 167.35 (C4), 160.40 (C7), 149.32 (C12), 143.84 (C13), 134.17 (C10), 120.94 (C15), 114.30 (C14), 111.11 (C11), 64.55 (C17), 56.01 (C16), 40.58 (C9), 32.99 (C5), 32.00 (C8), 17.86 (C6), 14.94 (C18). (+)LC-HRMS (*m*/*z*): calculated for [C₁₆H₂₁O₃N₃S + H]⁺ 336.1376, observed 336.1378. Combustion analysis for C₁₆H₂₁O₃N₃S: Calculated. C 57.29, H 6.31, N 12.53; found C 57.33, H 6.33, N 14.49.

3-((4-(3-methoxy-4-propoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (2c)

Yield: 0.504 g (72 %). IR (KBr): 3142m, 2965m, 2933m, 2876m, 1709s, 1633s, 1598s, 1516s, 1470m, 1454m, 1418m, 1347m, 1256s, 1230s, 1160m, 1135m, 1034m, 1019m, 978w, 897w, 796m, 702w, 516w, 500w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 9.33 (bs, NH, exchangeable with D₂O), 6.65-6.85 (m, 3H, H-11, H-14, H-15), 3.95 (t, 2H, J = 6.8 Hz, CH₂-17), 3.86 (s, 3H, CH₃-16), 3.75 (s, 2H, CH₂-5), 2.56-2.94 (m, 4H, CH₂-8, CH₂-9), 2.02 (s, 3H, CH₃-6), 1.86 (sext, 2H, J = 7.2 Hz, CH₂-18), 1.03 (t, 3H, J = 7.4 Hz, CH₃-19). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 172.66 (C2), 167.40 (C4), 159.90 (C7), 149.44 (C12), 146.94 (C13), 134.17 (C10), 120.28 (C15), 113.53 (C14), 112.59 (C11), 70.85 (C17), 56.13 (C16), 40.52 (C9), 32.93 (C5), 31.67 (C8), 22.64 (C18), 17.83 (C6), 10.48 (C19). (+)LC-HRMS (*m/z*): calculated for [C₁₇H₂₃O₃N₃S + H]⁺ 350.1533, observed 350.1532. Combustion

analysis for $C_{17}H_{23}O_3N_3S$: Calculated. C 58.43, H 6.63, N 12.02; found C 58.40, H 6.30, N 12.06.

3-((4-(4-isopropoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (2d)

Yield: 0.228 g (33 %). IR (KBr): 2973m, 2931m, 2857w, 1717s, 1639s, 1610s, 1511s, 1465m, 1334m, 1262s, 1157w, 1139m, 1111m, 1037w, 956w, 850w, 809w, 736w, 710w, 514w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 9.39 (bs, NH, exchangeable with D₂O), 6.66-6.87 (m, 3H, H-11, H-14, H-15), 4.47 (sept, 1H, J = 6.2 Hz, CH-17), 3.85 (s, 3H, CH₃-16), 3.75 (s, 2H, CH₂-5), 2.56-2.94 (m, 4H, CH₂-8, CH₂-9), 2.02 (s, 3H, CH₃-6), 1.35 (d, 6H, J = 6.0 Hz, CH₃-18, CH₃-19). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 172.82 (C2), 167.33 (C4), 160.97 (C7), 150.54 (C12), 145.63 (C13), 134.76 (C10), 120.28 (C15), 116.75 (C14), 112.81 (C11), 71.83 (C17), 56.08 (C16), 40.49 (C9), 32.97 (C5), 32.02 (C8), 22.24 (C18, C19), 17.84

(+)LC-HRMS (m/z): calculated for $[C_{17}H_{23}O_3N_3S + H]^+$ 350.1533, observed 350.1533. Combustion analysis for $C_{17}H_{23}O_3N_3S$: Calculated. C 58.43, H 6.63, N 12.02; found C 58.45, H 6.36, N 11.98.

3-((4-(4-butoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (2e)

Yield: 0.637 g (88 %). IR (KBr): 3145m, 2958m, 2935m, 2871m, 1709s, 1636s, 1604s, 1517s, 1467m, 1419m, 1346m, 1257s, 1234s, 1161m, 1138m, 1034m, 1009w, 972w, 897w, 844w, 795w, 701w, 516w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 9.27 (bs, NH, exchangeable with D₂O), 6.65-6.85 (m, 3H, H-11, H-14, H-15), 3.99 (t, 2H, *J* = 6.8 Hz, CH₂-17), 3.86 (s, 3H, CH₃-16), 3.75 (s, 2H, CH₂-5), 2.56-2.94 (m, 4H, CH₂-8, CH₂-9), 2.02 (s, 3H, CH₃-6), 1.82 (quint, 2H, *J* = 7.3 Hz, CH₂-18), 1.48 (sext, 2H, *J* = 7.4 Hz, CH₂-19), 0.97 (t, 3H, *J* = 7.2 Hz, CH₃-20). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 172.73 (C2), 167.37 (C4), 159.97 (C7), 149.46 (C12), 147.00 (C13), 134.15 (C10), 120.28 (C15), 113.50 (C14), 112.60 (C11), 69.03 (C17), 56.13 (C16), 40.51 (C9), 32.94 (C5), 31.96 (C8), 31.41 (C18), 19.27 (C19), 17.82 (C6), 13.88 (C20). (+)LC-HRMS (*m*/*z*): calculated for [C₁₈H₂₅O₃N₃S + H]⁺ 364.1689, observed 364.1689. Combustion analysis for C₁₈H₂₅O₃N₃S: Calculated. C 59.48, H 6.93, N 11.56; found C 59.44, H 6.95, N 11.51.

3-((4-(4-(benzyloxy)-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (2f)

Yield: 0.686 g (86 %). IR (KBr): 3152w, 3035w, 3954w, 2870w, 1710s, 1639s, 1605s, 1515s, 1455w, 1418w, 1345m, 1256s, 1227s, 1161m, 1136m, 1034w, 1011w, 857w 806w, 745m, 698m, 515w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 8.97 (bs, NH, exchangeable with D₂O), 7.25-7.50 (m, 5H, H-19, H-20, H-21, H22, H-23), 6.65-6.85 (m, 3H, H-11, H-14, H-15), 5.13 (s, 2H, CH₂-17), 3.88 (s, 3H, CH₃-16), 3.74 (s, 2H, CH₂-5), 2.55-2.93 (m, 4H, CH₂-8, CH₂-9), 2.00 (s, 3H, CH₃-6). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 172.52 (C2), 167.34 (C4), 160.12 (C7), 149.71 (C12), 146.58 (C13), 137.46 (C18), 134.86 (C10), 128.43 (C19, C23), 127.69 (C21), 127.26 (C20, C22), 120.28 (C15), 114.65 (C14), 112.65 (C11), 71.41 (C17), 56.13 (C16), 40.45 (C9), 32.90 (C5), 31.97 (C8), 17.83 (C6). (+)LC-HRMS (*m/z*): calculated for [C₂₁H₂₃O₃N₃S + H]⁺ 398.1533, observed 398.1532. Combustion analysis for C₂₁H₂₃O₃N₃S: Calculated. C 63.45, H 5.83, N 10.57; found C 63.50, H 5.81, N 10.62.

3-((4-(3-methoxy-4-((2-methylallyl)oxy)phenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (2g)

Yield: 0.441 g (61 %). IR (KBr): 3150m, 3079m, 2934m, 2852w, 1709s, 1634s, 1601s, 1514s, 1452m, 1418m, 1346m, 1256s, 1158m, 1137m, 1034m, 896w, 834w, 798w, 701w, 516w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ / ppm): 9.79 (bs, NH, exchangeable with D₂O), 6.65-6.85 (m, 3H, H-11, H-14, H-15), 5.08 (m, 1H, H-19), 4.97 (m, 1H, H-19), 4.49 (s, 2H, CH₂-17), 3.87 (s, 3H, CH₃-16), 3.75 (s, 2H, CH₂-5), 2.55-2.94 (m, 4H, CH₂-8, CH₂-9), 2.02 (s, 3H, CH₃-6), 1.82 (s, 3H, CH₃-20). ¹³C NMR (50 MHz, CDCl₃, δ / ppm): 173.02 (C2), 167.27 (C4), 160.53 (C7), 149.50 (C12), 146.63 (C13), 141.06 (C18), 134.54 (C10), 120.21 (C15), 114.13 (C14), 112.64 (C11), 112.42 (C19), 73.05 (C17), 56.11 (C16), 40.47 (C9), 32.99 (C5), 31.94 (C8), 19.34 (C20), 17.84 (C6). (+)LC-HRMS (*m*/*z*): calculated for [C₁₈H₂₃O₃N₃S + H]⁺ 362.1533, observed 362.1533. Combustion analysis for C₁₈H₂₃O₃N₃S: Calculated. C 59.81, H 6.41, N 11.63; found C 59.86, H 6.44, N 11.58.

Fig. S-1. ¹H-NMR spectra of 4-(3,4-dimethoxyphenyl)butan-2-one (1a)

Fig. S-5. ¹³C-NMR spectra of4-(4-ethoxy-3-methoxyphenyl)butan-2-one (1b)

Fig. S-7. ¹H-NMR spectra of 4-(3-methoxy-4-propoxyphenyl)butan-2-one (1c)

Fig. S-11. ¹³C-NMR spectra of4-(4-isopropoxy-3-methoxyphenyl)butan-2-one (1d)

Available on line at www.shd.org.rs/JSCS/

(CC) 2022 SCS.

Fig. S-17. ¹³C-NMR spectra of4-(4-(benzyloxy)-3-methoxyphenyl)butan-2-one (1f)

Fig. S-19. ¹H-NMR spectra of 4-(3-methoxy-4-((2-methylallyl)oxy)phenyl)butan-2-one (1g)

Fig. S-21. IR spectra of4-(3-methoxy-4-((2-methylallyl)oxy)phenyl)butan-2-one (1g)

Fig. S-22. ¹H-NMR spectra of 3-((4-(3,4-dimethoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2a**)

Fig. S-23. ¹³C-NMR spectra of 3-((4-(3,4-dimethoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2a**)

Fig. S-25. ¹H-NMR spectra of 3-((4-(4-ethoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2b**)

Available on line at www.shd.org.rs/JSCS/

(CC) 2022 SCS.

Fig. S-26. ¹³C-NMR spectra of 3-((4-(4-ethoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2b**)

Fig. S-27. IR spectra of 3-((4-(4-ethoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2b**)

Fig. S-28. ¹H-NMR spectra of

3-((4-(3-methoxy-4-propoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (2c)

Fig. S-29. ¹³C -NMR spectra of 3-((4-(3-methoxy-4-propoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2c**)

Available on line at www.shd.org.rs/JSCS/

Fig. S-31. ¹H-NMR spectra of3-((4-(4-isopropoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2d**)

Fig. S-33. IR spectra of3-((4-(4-isopropoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2thioxoimidazolidin-4-one (2d)

Fig. S-34. ¹H-NMR spectra of 3-((4-(4-butoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2thioxoimidazolidin-4-one (**2e**)

Fig. S-35. ¹³C -NMR spectra of 3-((4-(4-butoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2thioxoimidazolidin-4-one (2e)

Fig. S-36. IR spectra of 3-((4-(4-butoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2thioxoimidazolidin-4-one (2e)

Fig. S-37. ¹H-NMR spectra of3-((4-(4-(benzyloxy)-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2f**)

Fig. S-38. ¹³C -NMR spectra of3-((4-(4-(benzyloxy)-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2f**)

Fig. S-39. IR spectra of3-((4-(4-(benzyloxy)-3-methoxyphenyl)butan-2-ylidene)amino)-2thioxoimidazolidin-4-one (2f)

Fig. S-40. ¹H-NMR spectra of3-((4-(3-methoxy-4-((2-methylallyl)oxy)phenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2g**)

Fig. S-41. ¹³C-NMR spectra of3-((4-(3-methoxy-4-((2-methylallyl)oxy)phenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (**2g**)

Fig. S-43. 2D HETCOR spectra of 3-((4-(4-ethoxy-3-methoxyphenyl)butan-2-ylidene)amino)-2-thioxoimidazolidin-4-one (2b)

DFT calculation

All calculations were conducted using Gaussian 09¹ with the B3LYP functional^{2,3} and the split-valence triple-zeta basis set 6-311+G.^{4,5} To attain better description of the delocalization effects which are crucial for the geometry and electronic structure of the investigated molecules, diffuse functions were added to the heavy atoms. The p and d polarization functions were also used. Full geometry optimizations, without any symmetry constraints, and frequency calculations were performed for all species in gas phase. The frequency calculations were performed to confirm that the optimized structures are energetic minima (no imaginary frequencies).

LC-HRMS analysis

Samples dissolved in the methanol (c $@ 0.1 \text{ mg mL}^{-1}$) were directly, without separation, injected into analysing system including liquid chromatograph (1290 Infinity LC system: Agilent Technologies, Waldbronn, Germany) with a quarternary pump, a column oven, and an autosampler, connected to the Quadrupole Time-of-Flight mass detector (6550 iFunnel QTOF MS, Agilent Technologies; Santa Clara, CA, USA) equipped with a dual spray Agilent Jet Stream (AJS) electrospray ion source. Mobile phase was composed of a solvents A (water containing both 0.1 % formic acid and 5 mM ammonium formate) and B (ACN containing 0.1 % formic acid), 1:1 (v/v). The mobile phase flow rate was 0.20 mL min⁻¹, the column oven temperature was 25 °C and the injection volumes of samples were 0.2 µL. The compounds were analysed using a mass detector. Positive ion mode was recorded, and the instrument was operated in accurate TOF/MS scanning mode in the m/z range of 100 - 1,500, under following conditions: capillary voltage, 3,500 V, fragmentor voltage, 70 V, nozzle voltage, 1,000 V, skimmer 1, 65 V, octupole RF peak, 750 V, desolvation gas (nitrogen) temperature, 200 °C, desolvation gas (nitrogen) flow, 14 L min⁻¹, nebulizer, 241.32 kPa, sheath gas (nitrogen) temperature, 350 °C, sheat gas (nitrogen) flow, 11 L min⁻¹. Ions *m/z* 121.05087300 and 922.00979800 were used as a lock mass for accurate mass measurements. A personal computer system running Agilent MassHunter software (revisions B.06.01 and B.07.00) was used for data acquisition and processing, respectively.

VIRIJEVIĆ et al.

Table S-I. LC-HRMS analysis of 2a-g

Available on line at www.shd.org.rs/JSCS/

Fig. S-44. The effects of zingerone-thiohydantoin derivatives on MRC-5 cell viability

VIRIJEVIĆ et al.

Fig. S-45. The effects of zingerone-thiohydantoin derivatives on HCT-116 cell viability

Fig. S-46. The effects of reference control 5-FU on MRC-5 (A) and HCT-116 (B) cell viability

REFERECES

- 1. Gaussian 09, Revision C.01; Gaussian, Inc.: Wallingford, CT (2009)
- 2. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785
- (https://doi.org/10.1103/PhysRevB.37.785)

- D. J.Becke, *Chem. Phys.* 98 (1993) 5648 (<u>https://doi.org/10.1063/1.464913</u>)
 J. H. J. Wachters, *Chem. Phys.* 52 (1970) 1033 (<u>https://doi.org/10.1063/1.1673095</u>)
 P. J. J. Hay, *Chem. Phys.* 66 (1977) 4377 (<u>https://doi.org/10.1063/1.433731</u>).