

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 88 (2) \$35-\$50 (2023)

SUPPLEMENTARY MATERIAL TO Divergent synthesis and antitumour activity of novel conformationally constrained (–)-muricatacin analogues

SLAĐANA M. STANISAVLJEVIĆ¹, BOJANA M. SREĆO ZELENOVIĆ¹*, MIRJANA POPSAVIN¹, MARKO V. RODIĆ¹, VELIMIR POPSAVIN^{1,2} and VESNA V. KOJIĆ³

¹University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia, ²Serbian Academy of Sciences and Arts, Kneza Mihaila 35, 11000 Belgrade, Serbia and ³University of Novi Sad, Faculty of Medicine, Oncology Institute of Vojvodina, Put dr Goldmana 4, 21204 Sremska Kamenica, Serbia

J. Serb. Chem. Soc. 88 (2) (2023) 113-121

PHYSICAL AND SPECTRAL DATA OF SYNTHESIZED COMPOUNDS

Methyl-(Z)-3-O-methyl-5,6-dideoxy-1,2-O-isopropylidene-\alpha-d-xylo-hept-5-enofuranuronate (4)

Colourless oil $[\alpha]_D$ =-143 (*c* 0.5, MeOH), R_f =0.31 (3:2 PE/Et₂O). IR (CHCl₃): v_{max} 1721 (C=O), 1165 (O-C, ester). ¹H NMR (400 MHz, CDCl₃): δ 1.20 and 1.39 (2 × s, 3 H each, CMe₂), 3.22 (s, 3 H, OCH₃), 3.61 (s, 3 H, CO₂CH₃), 3.92 (d, 1 H, $J_{3,4}$ =3.3 Hz, H-3), 4.48 (d, 1 H, $J_{1,2}$ =3.9 Hz, H-2), 5.51 (ddd, 1 H, $J_{4,5}$ =6.9, $J_{3,4}$ =3.3, $J_{4,6}$ =1.6 Hz, H-4), 5.82 (dd, 1 H, $J_{5,6}$ =11.8, $J_{4,6}$ =1.7 Hz, H-6), 5.82 (d, 1 H, $J_{1,2}$ =3.9 Hz, H-1), 6.19 (dd, 1 H, $J_{5,6}$ =11.8, $J_{4,5}$ =6.9 Hz, H-5). ¹³C NMR (100 MHz, CDCl₃): δ 26.2 and 26.8 (2×CH₃-isopropylidene), 51.3 (CO₂CH₃), 58.0 (OCH₃), 77.6 (C-4), 82.2 (C-2), 86.2 (C-3), 104.9 (C-1), 111.5 (Me₂C), 120.6 (C-6), 145.2 (C-5), 165.8 (CO₂CH₃). HRMS-Heated ESI-Orbitrap: m/z 281.09908 (M⁺+Na), calcd. for C₁₂H₁₈NaO₆: 281.10011; m/z 297.07278 (M⁺+K), calcd. for C₁₂H₁₈KO₆: 297.07404.

Methyl-(E)-3-O-methyl-5, 6-dideoxy-1, 2-O-isopropylidene-a-d-xylo-hept-5-enofuranuronate~(5)

White crystals, mp 47 °C (Et₂O/hexane), $[\alpha]_D$ =-59.6 (*c* 0.5, CHCl₃), R_f =0.20 (3:2 PE/Et₂O). IR (CHCl₃): v_{max} 1724 (C=O), 1166.8 (O-C, ester). ¹H NMR (400 MHz, CDCl₃): δ 1.34 and 1.51 (2 × s, 3 H each, *CMe*₂), 3.39 (s, 3 H, OCH₃), 3.75 (s, 3 H, CO₂CH₃), 3.78 (d, 1 H, $J_{3,4}$ =3.2 Hz, H-3), 4.62 (d, 1 H, $J_{1,2}$ =3.8 Hz, H-2), 4.80 (ddd, 1 H, $J_{4,5}$ =4.9, $J_{3,4}$ =3.0, $J_{4,6}$ =1.7 Hz, H-4), 5.96 (d,1 H, $J_{1,2}$ =3.8

^{*} Corresponding author. E-mail: bojana.sreco@dh.uns.ac.rs

Hz, H-1), 6.18 (dd, 1 H, $J_{5,6}$ =15.7, $J_{4,6}$ =1.7 Hz, H-6), 6.97 (dd, 1 H, $J_{5,6}$ =15.7, $J_{4,5}$ =4.9 Hz, H-5). ¹³C NMR (100 MHz, CDCl₃): δ 26.1 and 26.8 (*CMe*₂), 51.6 (CO₂*C*H₃), 58.2 (OCH₃), 79.3 (C-4), 81.9 (C-2), 85.6 (C-3), 104.8 (C-1), 111.8 (Me₂*C*), 122.7 (C-6), 141.4 (C-5), 166.4 (-*C*O₂*C*H₃). HRMS-Heated ESI-Orbitrap: m/z 281.09931 (M⁺+Na), calcd. for C₁₂H₁₈NaO₆: 281.10011; m/z 297.0735 (M⁺+K), calcld. for C₁₂H₁₈KO₆: 297.07404.

Dimethylacetal 2,5-anhydro-6-deoxy-3-O-methyl-l-ido-hepturono-4,7-lactone (6)

Colorless oil; $[\alpha]_D=-11$ (*c* 0.5, CHCl₃), $R_f=0.26$ (4:1 CHCl₃/EtOAc). IR (CHCl₃): v_{max} 1789 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 2.70 (d, 1 H, $J_{6a,6b}=18.8$ Hz, H-6a), 2.74 (dd, 1 H, $J_{6a,6b}=18.8$, $J_{5,6b}=4.2$ Hz, H-6b), 3.42 (s, 3 H, OCH₃, C-3), 3.44 i 3.47 (2 × s, 3 H each, OCH₃), 3.99 (d, 1 H, $J_{2,3}=3.6$ Hz, H-3), 4.06 (dd, 1 H, $J_{1,2}=7.3$, $J_{2,3}=3.7$ Hz, H-2), 4.57 (d, 1 H, $J_{1,2}=7.3$ Hz, H-1), 4.90 (d, 1 H, $J_{4,5}=4.5$ Hz, H-4), 4.97 (m, 1 H, $J_{4,5}=4.5$, $J_{5,6b}=4.3$ Hz, H-5).¹³C NMR (100 MHz, CDCl₃): δ 36.0 (C-6), 53.6 and 55.2 (2 × OCH₃), 58.6 (OCH₃ C-3), 77.5 (C-5), 79.6 (C-2), 83.4 (C-3), 84.5 (C-4), 102.0 (C-1), 175.2 (C=O). HRMS-Heated ESI-Orbitrap: m/z 255.08469 (M⁺+Na), calcd. for C₁₀H₁₆NaO₆: 255.08446.

3,6-Anhydro-2-deoxy-5-O-methyl-l-ido-heptono-1,4-lactone (8)

White, needle-like crystals, mp 78–80 °C (EtOAc/hexane), $[\alpha]_D=-10.2$, (*c* 0.5, CHCl₃), $R_f=0.2$ (3:2 CH₂Cl₂/EtOAc). IR (CHCl₃) v_{max} 3455 (OH), 1781 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 2.14 (bs, 1 H, OH), 2.68 (dd, 1 H, $J_{2a,2b}=18.8$, $J_{2a,3}=1.2$ Hz, H-2a), 2.76 (dd, 1 H, $J_{2a,2b}=18.8$, $J_{2b,3}=5.7$ Hz, H-2b), 3.51 (s, 3 H, OCH₃), 3.82 (dd, 1 H, $J_{7a,7b}=12.1$, $J_{6,7a}=4.4$ Hz, H-7a), 3.88 (dd, 1 H, $J_{7a,7b}=12.1$, $J_{6,7b}=4.8$ Hz, H-7b), 4.11 (d, 1 H, $J_{5,6}=4.9$ Hz, H-5), 4.23 (q, 1 H, $J_{5,6}=4.7$, $J_{6,7}=4.7$, $J_{6,7b}=4.7$ Hz, H-6), 4.95 (d, 1 H, $J_{3,4}=4.7$ Hz, H-4), 5.01 (m, 1 H, $J_{2a,3}=1.2$, $J_{2b,3}=5.8$, $J_{3,4}=4.7$ Hz, H-3). ¹³C NMR (100 MHz, CDCl₃): δ 36.0 (C-2), 58.6 (-OMe), 61.5 (C-7), 76.9 (C-3), 80.5 (C-6), 85.1 (C-5), 85.3 (C-4), 175.2 (C=O). HRMS-Heated ESI-Orbitrap: m/z 211.05787 (M⁺+Na), calcd. for C₈H₁₂NaO₅: 211.05824.

3,6-Anhydro-2-deoxy-5-O-metyl-7-O-nonyl-l-ido-heptono-1,4-lactone (9)

Colorless, glassy crystals, mp 38–41 °C (CH₂Cl₂/hexane), $[\alpha]_{D} = -12.8$ (*c* 0.45, CHCl₃); R_{f} =0.23 (1:1 PE/Et₂O). IR (CHCl₃): v_{max} 1787.89 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, 3 H, J = 6.9 Hz, CH₃ from side chain), 1.24–1.33 (m, 12 H, 6 × CH₂ from side chain), 1.59 (m, 2 H, OCH₂CH₂(CH₂)₆CH₃), 2.70 (dd, 1 H, $J_{2a,2b}$ =19.0, $J_{2a,3}$ =2.3 Hz, H-2a), 2.76 (dd, 1 H, $J_{2a,2b}$ =18.8, $J_{2b,3}$ =4.9 Hz, H-2b), 3.40–3.54 (m, 5 H, OCH₃ and OCH₂(CH₂)₇CH₃), 3.60 (dd, 1 H, $J_{7a,7b}$ =10.3, $J_{6,7a}$ = 6.3 Hz, H-7a), 3.65 (dd, 1 H, $J_{7a,7b}$ =10.3, $J_{6,7a}$ =6.3 Hz, H-7b), 4.25 (dt, 1 H, $J_{5,6}$ =4.4, $J_{6,7b}$ =4.5, $J_{6,7a}$ =6.3 Hz, H-6), 4.94 (dd, 1 H, $J_{3,4}$ =4.8, $J_{4,5}$ =0.8 Hz, H-4), 4.97 (m, 1 H, $J_{2a,3}$ =2.3, $J_{2b,3}$ =4.8,

 $J_{3,4}$ =4.8 Hz, H-3). ¹³C NMR (100 MHz, CDCl₃): δ 14.1 (CH₃), 22.7, 26.1, 29.3, 29.5, 29.6, 29.6, 31.9 (7×CH₂ from side chain), 36.0 (C-2), 58.6 (OCH₃), 68.4 (C-7), 71.8 (OCH₂(CH₂)₇CH₃), 76.7 (C-3), 79.6 (C-6), 83.9 (C-5), 84.9 (C-4), 175.4 (C=O). HRMS-Heated ESI-Orbitrap: *m*/*z* 337.19785 (M⁺ + Na), calcd. for C₁₇H₃₀NaO₅: 337.19854.

3,6-Anhydro-2-deoxy-5-O-metyl-7-O-octyl-l-ido-heptono-1,4-lactone (10)

White cristals, mp 37–39 °C (Et₂O/hexane), $[\alpha]_{\rm D} = -17.2$ (*c* 0.5, CHCl₃); $R_{\rm f}$ =0.15 (7:3 PE/Et₂O). IR (CHCl₃): $v_{\rm max}$ 1791.06 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.89 (t, 3 H, *J*=6.9 Hz, CH₃), 1.22–1.36 (m, 10 H, 5 × CH₂ from side chain), 1.52–1.64 (m, 2 H, OCH₂CH₂(CH₂)₅CH₃), 2.70 (dd, 1 H, *J*_{2a,2b}=18.9, $J_{2a,3}$ =2.1 Hz, H-2a), 2.78 (dd, 1 H, $J_{2a,2b}$ =18.9, $J_{2b,3}$ = 4.9 Hz, H-2b), 3.39–3.53 (m, 2 H, OCH₂(CH₂)₆CH₃), 3.47 (s, 3 H, CH₃ from OCH₃), 3.59 (dd, 1 H, $J_{7a,7b}$ =10.3, $J_{6,7a}$ =6.4 Hz, H-7a), 3.64 (dd, 1 H, $J_{7a,7b}$ =10.3, $J_{6,7b}$ =4.8 Hz, H-7b), 3.99 (bd, 1 H, $J_{5,6}$ =4.0 Hz, H-5), 4.25 (dt, 1 H, $J_{6,7a}$ =6.3, $J_{6,7b}$ =4.6, $J_{5,6}$ =4.4 Hz, H-6), 4.94 (dd, 1 H, $J_{3,4}$ =4.8, $J_{4,5}$ =0.8 Hz, H-4), 4.97 (td, 1 H, $J_{2a,3}$ =2.2, $J_{2b,3}$ =4.9, $J_{3,4}$ =4.9 Hz, H-3).¹³C NMR (100 MHz, CDCl₃): 14.1 (CH₃), 22.6, 26.1, 29.2, 29.4, 29.6, 31.8 (6 × CH₂ from side chain), 36.0 (C-2), 58.6 (OMe), 68.4 (C-7), 71.8 [OCH₂(CH₂)₆CH₃], 76.8 (C-3), 79.6 (C-6), 83.9 (C-5), 84.9 (C-4); 175.4 (C=O). HRMS-Heated ESI-Orbitrap: *m*/z 323.18393 (M⁺ + Na), calcd. for C₁₆H₂₈NaO₅: 323.18289.

3,6-Anhydro-2-deoxy-7-O-heptyl-5-O-metyl-l-ido-heptono-1,4-lactone (11)

White, needle-like cristals, mp 44–45 °C (Et₂O/hexane), $[\alpha]_D=-10.0$ (*c* 0.5, CHCl₃), $R_f=0.16$ (3:2 PE/Et₂O). IR (CHCl₃) v_{max} 1791 (C=O).¹H NMR (400 MHz, CDCl₃): δ 0.86 (t, 3 H, *J*=6.9 Hz, CH₃ from side chain), 1.22–1.33 (m, 8 H, 4×CH₂ from side chain), 1.56 (m, 2 H, OCH₂CH₂(CH₂)₄CH₃), 2.66 (dd, 1 H, *J*_{2a,2b}=18.8, *J*_{2a,3}=1.6 Hz, H-2a), 2.73 (dd, 1 H, *J*_{2a,2b}=18.8, *J*_{2b,3}=5.3 Hz, H-2b), 3.37–3.55 (m, 2 H, OCH₂(CH₂)₅CH₃), 3.46 (s, 3 H, OCH₃), 3.56 (dd, 1 H, *J*_{7a,7b}=10.3, *J*_{6,7a}=6.4 Hz, H-7a), 3.61 (dd, 1 H, *J*_{7a,7b}=10.3, *J*_{6,7a}=6.4 Hz, H-7a), 3.61 (dd, 1 H, *J*_{7a,7b}=10.3, *J*_{6,7a}=6.3 Hz, H-6), 4.91 (d, 1 H, *J*_{3,4}=5.0 Hz, H-4), 4.94 (m, 1 H, *J*_{2a,3}=1.8, *J*_{2b,3}=5.0, *J*_{3,4}=5.0 Hz, H-3).¹³C NMR (100 MHz, CDCl₃): δ 14.1 (CH₃), 22.6, 26.0, 29.1, 29.6, 31.8 (5 × CH₂ from side chain), 36.0 (C-2), 58.6 (OCH₃), 68.4 (C-7), 71.8 [OCH₂(CH₂)₅CH₃], 76.8 (C-3), 79.5 (C-6), 83.9 (C-5), 84.9 (C-4), 175.4 (C=O). HRMS-Heated ESI-Orbitrap: *m*/z 309.16716 (M⁺+Na), calcd. for C₁₅H₂₆NaO₅: 309.16779.

3,6-Anhydro-2-deoxy-7-O-hexyl-5-O-metyl-l-ido-hexyl-1,4-lactone (12)

White crystals, mp 55 °C, (Et₂O/hexane); $[\alpha]_D = -13.2$ (*c* 0.5, CHCl₃), *R*_f=0.26 (7:3 PE/Et₂O). IR (CHCl₃) v_{max} 1790 (C=O). ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, 3 H, *J*=6.9 Hz, CH₃ from side chain), 1.23–1.39 (m, 6 H, 3 ×

CH₂ from side chain), 1.60 (m, 2 H, OCH₂CH₂(CH₂)₃CH₃), 2.71 (dd, 1 H, $J_{2a,2b}=18.8$, $J_{2a,3}=2.2$ Hz, H-2a), 2.76 (dd, 1 H, $J_{2a,2b}=18.8$, $J_{2b,3}=4.9$ Hz, H-2b), 3.41-3.54 (m, 5 H, OCH₃ i OCH₂(CH₂)₄CH₃), 3.60 (dd, 1 H, $J_{7a,7b}=10.3$, $J_{6,7a}=6.3$ Hz, H-7a), 3.65 (dd, 1 H, $J_{7a,7b}=10.3$, $J_{6,7b}=4.8$ Hz, H-7b), 4.00 (d, 1 H, $J_{5,6}=4.0$ Hz, H-5), 4.22 (dt, 1 H, $J_{5,6}=4.4$, $J_{6,7b}=4.5$, $J_{6,7a}=6.3$ Hz, H-6), 4.92 (d, 1 H, $J_{3,4}=4.8$ Hz, H-4), 4.94 (m, 1 H, $J_{2a,3}=2.2$, $J_{2b,3}=4.8$, $J_{3,4}=4.7$ Hz, H-3). ¹³C NMR (100 MHz, CDCl₃): δ 14.0 (CH₃), 22.6, 25.7, 29.5, 31.6 (4 × CH₂ from side chain), 36.0 (C-2), 58.5 (OCH₃), 68.4 (C-7), 71.8 [OCH₂(CH₂)₅CH₃], 76.8 (C-3), 79.5 (C-6), 83.8 (C-5), 84.9 (C-4), 175.4 (C=O). HRMS-Heated ESI-Orbitrap: m/z 273.17019 (M⁺+H), calcd. for C₁₄H₂₅O₅: 273.1702; m/z 295.15213 (M⁺+Na), calcld. for C₁₄H₂₄NaO₅: 295.15214.

Available on line at www.shd.org.rs/JSCS/

Fig. S-16. ¹³C-NMR spectrum of **12** (100 MHz, CDCl₃).

SAR ANALYSIS

TABLE S-I.	Cytotoxicit	y data for SAR analysis	
		2	

Compound	K562	HL60	Jurkat	Raji	MCF-7	MDA-MB 231	HeLa
1	0.04	25.85	100	0.1	21.35	100	0.17
9	10.25	17.7	15.4	21.75	4.85	11.32	13.5
10	18.12	13.68	7.36	35.84	1.11	28.33	9.12
11	5.6	24.54	22.97	28.49	12.31	25.33	11.51
12	7.69	21.18	25.34	27.03	18.33	15.81	15.22
13	8.76	6.12	9.71	15.95	22.18	39.48	68.32
14	9.09	13.92	5.47	16.85	18.77	28.26	18.02
15	8.87	5.67	8.86	17.33	22.87	34.59	10.9
16	5.65	7.42	5.25	11.82	25.31	8.5	33.79
17 ^b	5.66	4.75	6.97	7.25	102.36	296.78	6.39
18 ^b	0.74	0.68	19.78	4.25	0.34	28.7	3.41
19 ^b	1.02	1.1	11.53	5.98	2.38	9.76	0.56
20 ^b	0.7	4.91	8.87	1.11	12.34	15.62	3.54

^aIC₅₀ is the concentration of compound required to inhibit the cell growth by 50% compared to an untreated control. Values are means of three independent experiments. Coefficients of variation were less than 10 %. ^bTaken from reference¹

The structure-activity relationships were accessed as follows: the IC_{50} values of two compounds were compared, and the $\Delta \log IC_{50}$ was calculated ($\Delta \log IC_{50}$ is a difference between the log IC₅₀ values of an analogue and the corresponding control compound). Positive $\Delta \log IC_{50}$ values show a decrease of antipro-

liferative activity, whereas negative values indicate an increase in the activity upon the structural modification being considered. The results are presented in Figure S-17.

Fig. S-17. SAR Analysis. Influence of: (A) THF-ring closure, exchange of C_8 methylene group with O_8 ether function, 5-*O*-methylation; (B) substitution of methyl with benzyl group at C-5; (C) demethylation at C-5.

S48

CRYSTAL STRUCTURE DETERMINATION

Diffraction experiments were performed on a Gemini S diffractometer. Data collection and reduction procedures were computed with CrysAlisPro.² Crystal structure was solved with SHEXLT,³ and refined with SHEXL,⁴ utilizing ShelXle⁵ as a graphical user interface. The structure was validated internally by PLATON⁶ and externally against Cambridge Structural Database⁷ data by MOGUL⁸ utility within Mercury CSD.⁹ Crystallographic and refinement details are deposited in the Cambridge Crystallographic Data Centre under CCDC 2164235, obtainable free of charge from <u>https://www.ccdc.cam.ac.uk/structures/</u>. Selected crystallographic and refinement details are listed in Table S-II.

Table S-II. Pertinent crystallographic and refinement details of compound 8

	*				
Crystal data					
Chemical formula	$C_8H_{12}O_5$				
$M_{ m r}$	188.18				
Crystal system	Orthorhombic				
Space group	$P2_{1}2_{1}2_{1}$				
Temperature, K	295				
<i>a</i> / Å	7.4251 (2)				
b / Å	7.7715 (2)				
<i>c</i> / Å	16.2624 (5)				
$V / \text{\AA}^3$	938.41 (5)				
Ζ	4				
Radiation type	Μο Κα				
μ / mm^{-1}	0.11				
Crystal size, mm	0.58 imes 0.36 imes 0.28				
Data collection					
Diffractometer	Gemini S (Oxford Diffraction)				
Absorption correction	Multi-scan				
T_{\min}, T_{\max}	0.918, 1.000				
No. of measured	8304				
No. of independent	2259				
No. of observed $[I > 2\sigma(I)]$ reflections	1989				
$R_{\rm int}$	0.021				
$(\sin \theta / \lambda)_{\rm max} / {\rm \AA}^{-1}$	0.687				
Refinement					
$R[F^2 > 2\sigma(F^2)]$	0.036				
$wR(F^2)$	0.087				
S	1.07				
No. of reflections	2259				
No. of parameters	123				
H-atom treatment	Mixed				
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ / e Å ⁻³	0.12, -0.18				
Absolute structure parameter	Meaningless				

REFERENCES

- B. Srećo Zelenović, S. Kekezović, M. Popsavin, V. Kojić, G. Benedeković, V. Popsavin, J. Serb. Chem. Soc. 84 (2019) 1345 (https://doi.org/10.2298/JSC190912104S)
- 2. Rigaku Oxford Diffraction, CrysAlisPro Software system, Rigaku Corporation, Wroclaw, Poland, 2021 https://www.rigaku.com/products/crystallography/crysalis
- G. M. Sheldrick, Acta Crystallogr. A 71 (2015) 3 (https://dx.doi.org/10.1107/S2053273314026370)
- G. M. Sheldrick, Acta Crystallogr. C 71 (2015) 3 (https://dx.doi.org/10.1107/S2053229614024218)
- C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 44 (2011) 1281 (https://dx.doi.org/10.1107/S0021889811043202)
- A. L. Spek, Acta Crystallogr. D 65 (2009) 148 (https://dx.doi.org/10.1107/S090744490804362X)
- C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr B 72 (2016) 171 (https://dx.doi.org/10.1107/S2052520616003954)
- I. J. Bruno, J. C. Cole, M. Kessler, J. Luo, W. D. Sam Motherwell, L. H. Purkis, B. R. Smith, R. Taylor, R. I. Cooper, S. E. Harris, A. Guy Orpen, *J. Chem. Inf. Comput. Sci.* 44 (2004) 2133 (https://dx.doi.org/10.1021/CI049780B)
- C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, *J. Appl. Crystallogr.* 41 (2008) 466 (https://dx.doi.org/10.1107/S0021889807067908).