

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 88 (4) S116–S120 (2023)

SUPPLEMENTARY MATERIAL TO Performance of carbon-coated magnetic nanocomposite in methylene blue and arsenate treatment from aqueous solution

NGOC BICH NGUYEN^{1,2*}, THI QUE PHUONG PHAN³, CAO THANH TUNG PHAM^{1,4}, HUU NGHI NGUYEN², SY NGUYEN PHAM⁵, QUOC KHUONG ANH NGUYEN^{6**} and DINH THANH NGUYEN^{1,3***}

¹Graduate University of Science and Technology, Viet Nam Academy of Science and Technology, Hanoi City, 100000, Vietnam, ²Dong Thap University, Cao Lanh City, 870000, Vietnam, ³Institute of Applied Materials Science, Viet Nam Academy of Science and Technology, Ho Chi Minh City, 700000, Vietnam, ⁴Institute of Chemical Technology, Viet Nam Academy of Science and Technology, Ho Chi Minh City, 700000, Vietnam, ⁵Ho Chi Minh City University of Natural Resources and Environment, Vietnam and ⁶Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 70000, Vietnam

J. Serb. Chem. Soc. 88 (4) (2023) 423–435

Fig. S-1. EDS analysis (a) and elementals map (b) of CMC.

^{*} Corresponding authors. E-mail: (*)nnbich@dthu.edu.vn; (**)nqkanh@ntt.edu.vn; (***)dinhthanhng53@gmail.com

SUPPLEMENTARY MATERIAL

Fig. S-2. Elemental maps of C (a), O (b), Si (c) and Fe (d) of CMC.

Fig. S-3. Magnetization curves and illustration of the magnetic separability of CMC.

Available on line at www.shd.org.rs/JSCS/

Fig. S-4. Plot of point of zero charge of CMC.

Model	Parameter	Equation			
Adsorption kinetic models					
Pseudo first-order	$q_{\rm e}$ / mg g ⁻¹ = equilibrium adsorption capacity	$q_t = q_e - q_e e^{-k_1 t}$	(1)		
	$q_t / \text{mg g}^{-1} = \text{adsorption capacity at time } t$				
	$k_l / \min^{-1} = \text{rate constant}$				
Pseudo second-order	k_2 / g mg ⁻¹ min ⁻¹ = rate constant	$q_t = \frac{k^2 q_e^2 t}{1 + k^2 q_e t}$	(2)		
Thermodynam	nic equations				
	ΔS° / J mol ⁻¹ = entropy change	$\ln K_{\rm D} = \frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$	(3)		
	ΔH° / J mol ⁻¹ = enthalpy change				
Van't Hoff	$R / J \text{ mol}^{-1} \text{ K}^{-1} = 8.314 \text{ (universal gas constant)}$				
equation	T / K = absolute temperature				
	$K_{\rm D}$ / L g ⁻¹ = $q_{\rm e}$ /C _e				
	thermodynamic equilibrium constant				
	ΔG° / J mol ⁻¹ = Gibbs free energy change	$\Box G^{\rm o} = -RT \ln K_{\rm D}$	(4)		
Adsorption isotherms					
Langmuir	$a / mg g^{-1} = maximum monolayer adsorption$	C_{a} 1 C_{a}			
	q_m , mgg maximum monorayer adsorption capacity of the adsorbent	$\frac{1}{a} = \frac{1}{k} + \frac{1}{a}$	(5)		
		$Y_e \qquad x_a Y_m \qquad Y_m$			
	$K_a = \text{energy constant}$				
	$R_{\rm L}$ = separation factor which gives an idea about Langmuir isotherm	$R_{\rm L} = \frac{1}{1 + K_{\rm a}C_0}$	(6)		
Freundlich	$K_{\rm F} / {\rm mg g}^{-1} {\rm L}^{1/n} {\rm mg}^{-1/n} = {\rm Freundlich \ constant}$ $n = {\rm intensity \ of \ adsorption, \ n > 1 \ indicates \ a \ favourable \ and \ heterogeneous \ adsorption}$	$\ln q_{\rm e} = \ln K_{\rm F} + \frac{1}{n} \ln C_{\rm e}$	(7)		

TABLE S-I. Different kinetic models, thermodynamic equations and adsorption isotherms

SUPPLEMENTARY MATERIAL

TABLE S-II. The comparison of the magnetization of CMC with various biochar

Precursors of magnetic biochar	Method	Magnetization, emu g ⁻¹	Reference
Rice straw, Fe(NO ₃) ₃ , KOH	Hydrothermal	33.7	This work
Coconut shells, FeCl ₃	Pyrolysis, microwave	6.0	1
Corn stalk, FeSO ₄ , Na ₂ S ₂ O ₃ , NaOH	Hydrothermal	11.2	2
Corn stalk, FeSO ₄ , Na ₂ S ₂ O ₃ , NaOH	Pyrolysis	20.4	2
Palm fiber, FeSO ₄ , FeCl ₃ , NH ₃	Pyrolysis	19.4	3
Firwood, α-FeOOH	Pyrolysis	20.8	4
Oleyl amine, FeCl ₂ , FeCl ₃ , NaOH	Hydrothermal	21.7	5
Rice husk, Fe(NO ₃) ₃ , KMnO ₄	Pyrolysis	27.5	6

TABLE S-III. The porous parameters of RS, BS, CMC samples

Sample	$S_{\rm BET} / {\rm m}^2 {\rm g}^{-1}$	$V_{\rm T} /{\rm cm}^3{\rm g}^{-1}$	D _P / nm
RS	1.3	0.01	30.6
BS	6.6	0.04	33.0
CMC	171.4	0.15	6.0

TABLE S-IV. The comparison of the maximum adsorption capacity of MB and As(V) on CMC with various adsorbents.

Adaphant	Capacity, mg g ⁻¹		
Adsorbent	MB	As(V)	Ref.
CMC	110.63	2.31	This study
Fe ₂ O ₃ -ZrO ₂ /BC	38.1	1.01	7
M-MWCNTs	48.06	-	8
Fe ₃ O ₄ /MWCNT	74	-	9
Fe ₃ O ₄ @C NPs	117	-	10
HPB (hematite/biochar)	-	0.43	11
Ch-Rs (chitosan/red scoria)	-	0.72	12
OBC (Canola straw-based biochar)	-	0.95	13
TB 800 (biochar from waste)	-	1.25	14
PAC-500 (magnetic biosorbents)	-	2.00	15
MC-O/NC-L-MG (magnetite/ microcellulose)	-	18.5	16
ChM (Chitosan-Magnetite Hydrogel)	-	66.9	17

REFERENCES

- M. W. Yap, N. M. Mubarak, J. N. Sahu, E. C. Abdullah, J. Ind. Eng. Chem. 45 (2017) 287 (https://doi.org/10.1016/j.jiec.2016.09.036)
- Y. Tu, Z. Peng, P. Xu, H. Lin, X. Wu, L. Yang, J. Huang, *Bioresources* 12 (2017) 1077 (https://doi:10.15376/biores.12.1.1077-1089)
- X. Zhou, J. Zhou, Y. Liu, J. Guo, J. Ren, F. Zhou, *Fuel* 233 (2018) 469 (https://doi.org/10.1016/j.fuel.2018.06.075)
- D. D. Sewu, H. N. Tran, G. Ohemeng-Boahen, S. H. Woo, *Sci. Total Environ.* 717 (2020) 137091 (https://doi.org/10.1016/j.scitotenv.2020.137091)
- X. Bao, Z. Qiang, J.-H. Chang, W. Ben, J. Qu, J. Environ. Sci. 26 (2014) 962 (https://doi.org/10.1016/S1001-0742(13)60485-4)

Available on line at www.shd.org.rs/JSCS/

NGUYEN et al.

- C. Sun, T. Chen, Q. Huang, J. Wang, S. Lu, J. Yan, *Environ. Sci. Pollut. Res. Int.* 26 (2019) 8902 (https://doi.org/10.1007/s11356-019-04321-z)
- S. I. Siddiqui, S. A. Chaudhry, J. Clean. Prod. 223 (2019) 849 (https://doi.org/10.1016/j.jclepro.2019.03.161)
- L. Ai, C. Zhang, F. Liao, Y. Wang, M. Li, L. Meng, J. Jiang, J. Hazard. Mater. 198 (2011) 282 (https://doi.org/10.1016/j.jhazmat.2011.10.041)
- A. Suwattanamala, N. Bandis, K. Tedsree, C. Issro, *Mater. Today: Proc.* 4 (2017) 6567 (https://doi.org/10.1016/j.matpr.2017.06.169)
- R. Wu, J.-H. Liu, L. Zhao, X. Zhang, J. Xie, B. Yu, X. Ma, S.-T. Yang, H. Wang, Y. Liu, J. Environ. Chem. Eng. 2 (2014) 907 (https://doi.org/10.1016/j.jece.2014.02.005)
- S. Wang, B. Gao, A. R. Zimmerman, Y. Li, L. Ma, W. G. Harris, K. W. Migliaccio, Bioresour. Technol. 175 (2015) 391 (https://doi.org/10.1016/j.biortech.2014.10.104)
- T. G. Asere, S. Mincke, J. De Clercq, K. Verbeken, D. A. Tessema, F. Fufa, C. V. Stevens, G. Du Laing, *Int. J. Environ. Res. Public Health* 14 (2017) 1 (https://doi.org/10.3390/ijerph14080895)
- K. Zoroufchi Benis, J. Soltan, K. N. McPhedran, *Chem. Eng. J.* 423 (2021) 130061 (https://doi.org/10.1016/j.cej.2021.130061)
- L. Verma, J. Singh, J. Environ. Manage. 248 (2019) 109235 (https://doi.org/10.1016/j.jenvman.2019.07.006)
- L. Verma, M. A. Siddique, J. Singh, R. N. Bharagava, J. Environ. Manage. 250 (2019) 109452 (https://doi.org/10.1016/j.jenvman.2019.109452)
- K. Taleb, J. Markovski, Z. Veličković, J. Rusmirović, M. Rančić, V. Pavlović, A. Marinković, *Arab. J. Chem.* 12 (2019) 4675 (https://doi.org/10.1016/j.arabjc.2016.08.006)
- I. P. Verduzco-Navarro, E. Mendizabal, J. A. Rivera Mayorga, M. Renteria-Urquiza, A. Gonzalez-Alvarez, N. Rios-Donato, *Gels* 8 (2022) 1 (https://doi.org/10.3390/gels8030186).

S120