

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 88 (2) S51–S59 (2023)

SUPPLEMENTARY MATERIAL TO Screening the binding affinity of bile acid derivatives for the glucocorticoid receptor ligand-binding domain

SRÐAN BJEDOV^{1*#}, SOFIJA BEKIĆ^{2#}, MAJA MARINOVIĆ², DUŠAN ŠKORIĆ^{1#}, KSENIJA PAVLOVIĆ^{1#}, ANÐELKA ĆELIĆ², EDWARD PETRI² and MARIJA SAKAČ^{1#}

¹Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia and ²Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000, Novi Sad, Serbia

J. Serb. Chem. Soc. 88 (2) (2023) 123–139

(3EZ, 7Z, 12Z)-3,7,12-Trioximino-5β-cholan-24-oic acid (1)

¹H NMR (400 MHz, DMSO- d_6 , δ) 10.30 and 10.28 (s, 1H, NOH on C-7), 10.19 and 10.18 (s, 1H, NOH on C-3), 10.14 (s, 1H, NOH on C-12), 1.13-1.12 (overlapping singlets, 3H, H-19), 0.89-0.88 (overlapping doublet (H-21) and singlet (H-18), 6H). ¹³C NMR (101 MHz, DMSO- d_6 , δ) 175.38 (C-24), 162.61(C-12), 157.41 (C-7), 156.87 (C-3), 156.67 (C-3), 53.57, 53.54, 49.23, 46.42, 45.21, 44.07, 43.94, 43.84, 41.52, 36.71, 36.67, 36.29, 35.72, 35.15, 32.76, 31.95, 30.96, 27.72, 27.44, 27.33, 26.39, 25.57, 25.42, 22.50 (C-19), 22.39 (C-19), 20.14, 19.86 (C-21), 19.32, 12.59 (C-18). (+)ESI-HRMS (*m/z*): calculated for C₂₄H₃₇N₃O₅ [M+Na]⁺ 470.26309, found 470.26093.

* Corresponding author. E-mail: srdjan.bjedov@dh.uns.ac.rs

S51

BJEDOV et al.

Fig. S-1. Compound 1^{1} H NMR (400 MHz, DMSO- d_6) spectra.

Fig. S-2. Compound 1^{13} C NMR (101 MHz, DMSO- d_6) spectra.

Methyl (7Z,12Z)-3,3-dimethoxy-7,12-dioximino-5β-cholan-24-oate (2)

¹H NMR (400 MHz, DMSO-*d*₆, δ) 10.21 (s, 1H, NOH on C-7), 10.11 (s, 1H, NOH on C-12), 3.56 (s, 3H, CH₃ ester), 3.01 (s, 3H, OCH₃), 3.00 (s, 3H, OCH₃), 1.09 (s, 3H, H-19), 0.87 (d, *J* = 6.8 Hz, 3H, H-21), 0.86 (s, 3H, H-18).¹³C NMR (101 MHz, DMSO-*d*₆, δ) 174.17 (C-24), 162.71 (C-12), 157.75 (C-7), 100.07 (C-3), 53.68, 51.67 (CH₃ ester), 49.18, 47.32 (overlapping OCH₃ signals), 46.30, 44.00, 42.06, 41.56, 39.42, 36.16, 35.76, 33.97, 32.60, 31.50, 30.88, 27.80, 27.29, 25.40, 22.69 (C-19), 20.15, 19.75 (C-21), 12.50 (C-18). (+)ESI-HRMS (*m/z*): calculated for $C_{27}H_{44}N_2O_6$ [M+Na]⁺ 515.30970, found 515.30725.

Fig. S-3. Compound 2 1H NMR (400 MHz, DMSO-*d*₆) spectra.

Fig. S-5. Compound 2 NOESY NMR spectra.

¹H NMR (400 MHz, CDCl₃, δ) δ 3.65 (s, 3H, CH₃ ester), 3.13 (s, 3H, OCH₃), 3.10 (s, 3H, OCH₃), 1.29 (s, 3H, H-19), 1.02 (s, 3H, H-18), 0.82 (d, J = 6.6 Hz, 3H, H-21).¹³C NMR (101 MHz, CDCl₃, δ) 212.53 (C-12), 209.71 (C-7), 174.56 (C-24), 99.75 (C-3), 56.81, 51.80, 51.47 (CH₃ ester), 48.94, 47.64 (OCH₃), 47.41 (OCH₃), 45.55, 45.21, 45.09, 43.40, 38.55, 36.03, 35.53, 34.65, 31.89, 31.29, 30.46, 27.66, 26.60, 25.17, 22.35 (C-19), 18.61 (C-21), 11.79 (C-18). (+)ESI-HRMS (*m/z*): calculated for C₂₇H₄₂O₆ [M+Na]⁺ 485.28791, found 485.28558.

Available on line at www.shd.org.rs/JSCS/

Fig. S-6. Compound **3** ¹H NMR (400 MHz, CDCl₃) spectra.

Fig. S-7. Compound **3**¹³C NMR (101 MHz, CDCl₃) spectra.

12α -Hydroxy-3-oxo-5 β -chola-4,6-dien-24-oic acid (25)

¹H NMR (400 MHz, DMSO- d_6 , δ) 11.95 (bs, 1H, H-24), 6.16 (s, 2H, H-4 and H-6), 5.61 (s, 1H, H-7), 4.31 (d, J = 3.6 Hz, 1H, OH), 3.87 (s, 1H, H-12), 1.04 (s, 3H, H-19), 0.94 (d, J = 6.5 Hz, 1H, H-21), 0.71 (s, 3H, H-18). ¹³C NMR (101 MHz, DMSO- d_6 , δ) δ 198.63 (C-3), 175.42 (C-24), 163.96 (C-5), 142.02 (C-4), 127.90 (C-6), 123.28 (C-7), 70.97 (C-12), 47.28, 46.54, 45.25, 43.71, 37.82, 35.55, 35.38, 34.02, 33.74, 31.31, 31.17, 28.67, 27.43, 23.31, 17.34 (C-21), 16.29 (C-19), 12.53 (C-18). IR (film, cm⁻¹): 3436, 2923, 1733, 1379, 1261. (+)ESI-HRMS (*m*/z): calculated for C₂₄H₃₄O₄ [M-H]⁻ 387.25353, found 387.25246.

BJEDOV et al.

Fig. S-8. Compound 25 ¹H NMR (400 MHz, DMSO- d_6) spectra.

Fig. S-9. Compound 25 13 C NMR (101 MHz, DMSO- d_6) spectra.

Ethyl 12α-hydroxy-3-oxo-5β-chola-4,6-dien-24-oate (26)

¹H NMR (400 MHz, DMSO-*d*₆, δ) 6.15 (s, 2H, H-4 and H-6), 5.59 (s, 1H, H-7), 4.29 (d, J = 4.0 Hz, 1H, OH), 4.03 (q, J = 6.9 Hz, 2H, CH₂ from Et), 3.85 (d, J = 3.1 Hz, 1H, H-12), 1.16 (t, J = 7.1 Hz, 3H, CH₃ from Et), 1.03 (s, 3H, H-19), 0.92 (d, J = 6.5 Hz, 3H, H-21), 0.69 (s, 3H, H-18). ¹³C NMR (101 MHz, DMSO-*d*₆, δ) 198.59 (C-3), 173.74 (C-24), 163.92 (C-5), 141.97 (C-4), 127.91 (C-6), 123.29 (C-7), 70.95 (C-12), 60.09 (CH₂ from Et), 47.28, 46.49, 45.25, 43.69, 37.81, 35.54, 35.33, 34.02, 33.73, 31.17, 31.10, 28.66, 27.43, 23.30, 17.29 (C-21), 16.29 (C-19), 14.61 (CH₃ from Et), 12.49 (C-18). IR (film, cm⁻¹): 3457, 2943, 2871, 1734, 1649, 1615, 1447, 1268, 1180, 1034. (+)ESI-HRMS (*m*/*z*): calculated for C₂₆H₃₈O₄ [M-H]⁻ 415.28483, found 415.28355.

Available on line at www.shd.org.rs/JSCS/

Fig. S-10. Compound **26** ¹H NMR (400 MHz, DMSO- d_6) spectra.

2-(5β-chol-3-ene-7α,12α,24-triol)-N-(1-hydroxy-2-methylpropan-2-yl)acetamide (30)

¹H NMR (400 MHz, DMSO-*d*₆, δ) 6.74 (s, 1H, NH), 5.41 (s, 1H, H-4), 4.05 (s, 1H, OH on C-12), 3.85 (s, 1H, OH on C-7), 3.79 (s, 1H, H-12), 3.60 (s, 1H, H-7), 3.46 and 3.37 (both are d, $J_2 = 10.8$ Hz, 1H, CH₂ from 1-hydroxy-2-methylpropan-2-yl), 3.35 (m, 2H, H-24), 2.79 and 2.54 (both are d, $J_2 = 15.1$ Hz, 1H, CH₂ from acetamide), 1.20 and 1.18 (s, 3H, CH₃ from 1-hydroxy-2-methylpropan-2-yl), 0.92 (d, J = 6.5 Hz, 3H, H-21), 0.89 (s, 3H, H-19), 0.61 (s, 3H, H-18). ¹³C NMR (101 MHz, DMSO-*d*₆, δ) 170.57 (carbonyl from acetamide), 133.02 (C-4), 127.75 (C-3), 71.02 (C-12), 67.81 (CH₂ from 1-hydroxy-2-methylpropan-2-yl), 66.62 (C-7), 61.40 (C-24), 54.45, 46.33, 45.78, 41.64, 41.46, 39.21, 35.45, 34.82, 33.84, 32.84, 31.94, 29.41, 29.13, 27.46, 26.19, 24.28, 23.53, 23.29, 22.86, 21.97 (C-19), 21.17, 17.38 (C-21), 12.30 (C-18). (+)ESI-HRMS (*m*/*z*): calculated for C₃₀H₅₁O₅ [M+Na]⁺ 528.36649, found 528.36477.

BJEDOV et al.

S58

Fig. S-14. Dose-dependent changes in the fluorescence intensity normalized by optical density (F/OD) of yeast cells expressing GR LBD-YFP upon addition of the glucocorticoid receptor ligand, prednisolone, at six different concentrations (25, 50, 100, 250, 500 and 1000 μM) following 15 h exposure.