

J. Serb. Chem. Soc. 89 (7-8) S213-S217 (2024)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO

Development of 2D and 3D QSAR models of pyrazole derivatives as acetylcholine esterase inhibitors

PUJA MISHRA^{1*}, SUMIT NANDI¹, ANKIT CHATTERJEE¹, TRIDIB NAYEK¹, SOUVIK BASAK¹, AMIT KUMAR HALDER^{1,2}and ARUP MUKHERJEE³

¹Dr. B.C. Roy College of Pharmacy & Allied Health Sciences, Durgapur, WB, India, ²LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal and ³Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, WB, India

J. Serb. Chem. Soc. 89 (7–8) (2024) 981–995

TEXT S1. MODEL VALIDATION PROCEDURES

Leave-one-out method

Leave-one-out (LOO), one of the popular cross-validation methods was implemented. The cross-validated R^2 is the result from the cross-validation method which is used as a condition of robustness and predictive capability of the model. The cross-validated determination coefficient R^2 that is LOO-Q² is calculated using the following formula

$$Q^{2} = 1 - \sum (Y_{obs} - Y_{pred})^{2} / \sum (Y_{obs} - \overline{Y})^{2}$$

In this equation, \overline{Y} denotes average activity value of the training set, Y_{obs} and Y_{pred} signify the values of observed and predicted activity respectively. A high Q² value (Q²>0.5) is considered as parameter of the high predictive capability of the model.

External validation

Calculation of R^{2}_{pred} from test set

In this study, the original dataset was divided into training set and test set. Based on the training set compounds, 2D QSAR model (MLR equation) was developed. The predictive ability of the models was determined by the statistical parameter, like the predictive R^2 (R^2_{pred}) values, which was derived by the following equation

$$R^{2}_{pred} = 1 - \sum (Y_{pred(Test)} - Y_{Test})^{2} / \sum (Y_{Test} - \overline{Y}_{Training})^{2}$$

S213

Available online at: http://www.shd.org.rs/JSCS

^{*} Corresponding author. E-mail: pujam.phe15@itbhu.ac.in

MISHRA et al.

In this equation, $Y_{pred (Test)}$ and $Y_{(Test)}$ represents the predicted and the observed activity values of a certain test set of compounds, respectively, and \overline{Y} training denotes the mean activity value of the training set. The value of R² pred > 0.6 indicates a good external predictability of a model.

Here, the multiple linear regression model generated from trainee set was used for the prediction purpose of bioactivity of the test set compounds by forming an equation as

log Predicted activity (y) = $m_1x_1 + m_2x_2 + m_3x_3 + \dots + m_nx_n + C$

where m_1 , m_2 , m_3 , ---, m_n are respective coefficients of descriptors such as x_1 , x_2 , x_3 , ----, x_n

A well-known statistical method (metrics) was used to determine the goodness of the fit, the robustness and the internal predictivity of the final QSAR model. The coefficient of determination (R²), adjusted R² (R²_A) and the MAE (mean absolute error) were used to generate the goodness fit of the model and the internal cross validation coefficient Q²_{LOO} was used to check the robustness and the internal predictivity. Further, the metrics such as r_m^2 and $r_m^2_{LOO}$ are used as the internal validation parameters. The external validation parameter R²_{Pred} is essential to judge the external predictivity of the molecule. The best QSAR model was validated by the inter-correlation (Pearson r) between the two descriptors. A correlation matrix was generated to check the correlation matrix of different descriptors.

TEXT S2. ENERGY OPTIMIZATION OF SELECTED MOLECULES

The results of Auto energy optimization of the compounds using Avogadro give values, such as 260.085 KJ/mol which is confirmed using Orca (the semi empirical method). The structural optimization using both the software exhibits that there is no significant change in geometry after the various geometry optimization cycle.

S214

SUPPLEMENTARY MATERIAL

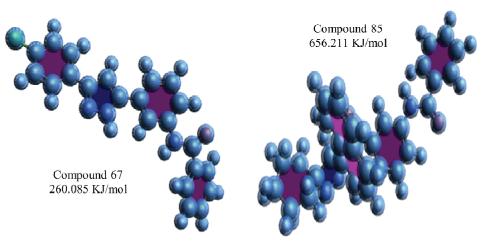


Fig. S1. Geometry optimization using Avogadro by using MM force fields.

(in optimized structures (coordinatily with a source empirical method)					
Energy change	-0.0004823076	0.0000050000	(No significant		
energy change a					
RMS gradient	0.0004785364	0.0001000000			
MAX gradient	0.0034948286	0.0003000000			
RMS step	0.0034607630	0.0020000000			
MAX step	0.0320313071	0.0040000000			

QM optimized structures (eventually with a semi-empirical method)

Diagonalization of the overlap matrix:	
Smallest eigenvalue	2.478e-04
Time for diagonalization	0.275 sec
Threshold for overlap eigenvalues	1.000e-08
Number of eigenvalues below threshold	0
Time for construction of square roots	0.112 sec
Total time needed	0.395 sec

Available online at: http://www.shd.org.rs/JSCS

MISHRA et al.

Sr.	Experimental	Predicte	nB	C-	Mv	CATS2D_08_	C-
No.	pIC50	d pIC50	Μ	001		DL [–] –	014
43	5.393	5.713	24	0	0.6853	4	0
44	5.713	5.517	24	0	0.7045	4	0
46	5.711	5.665	24	0	0.7238	3	0
47	5.665	5.521	24	0	0.7091	4	0
49	5.68	5.68	24	0	0.6942	4	0
50	5.589	5.589	24	0	0.6942	4	0
54	5.627	5.073	24	0	0.6988	4	0
55	5.495	5.06	24	0	0.6988	4	0
56	5.215	5.627	24	0	0.6991	4	1
57	5.417	5.495	25	0	0.7037	4	0
58	5.405	5.215	25	0	0.7037	4	0
59	4.828	5.417	24	1	0.6738	4	0
60	4.771	5.405	24	1	0.6738	4	0
66	5.705	4.828	21	0	0.6469	4	0
67	6.333	4.81	21	0	0.6607	4	0
68	5.706	7.721	21	0	0.6607	3	0
69	5.877	5.705	21	0	0.6745	3	0
70	5.943	6.333	21	0	0.664	4	0
71	5.752	5.877	21	0	0.664	4	0
72	6.023	5.943	21	0	0.6533	4	0
73	5.789	5.752	21	0	0.6533	4	0
74	5.635	6.023	21	0	0.6415	4	0
75	5.548	5.789	21	0	0.6415	4	0
76	5.521	5.635	21	0	0.6367	4	0
77	5.838	5.548	21	0	0.6586	4	0
78	5.716	5.521	21	0	0.6586	4	0
79	5.65	5.716	21	0	0.6595	4	1
81	5.707	5.65	22	0	0.6608	4	0
82	5.329	5.75	21	1	0.6403	4	0
83	5.23	5.707	21	1	0.6403	4	0
84	5.146	5.23	21	2	0.6289	6	0
85	4.535	5.146	26	0	0.6567	4	0

 Table SI. Trainee set with chosen descriptors of 2D-QSAR

S216

SUPPLEMENTARY MATERIAL

	Experimenta	Predicted			CATS2D_08_	
Sr. No.	l pIC50	pIC ₅₀	C-001	Mv	DL	C-014
45	5.517	5.393	24	0	0.7045	3
48	5.521	5.711	24	0	0.7091	4
51	5.073	4.818	24	0	0.6746	4
52	5.06	4.771	24	0	0.6746	4
53	4.818	4.556	24	0	0.6657	4
61	4.81	5.706	24	2	0.6547	6
62	4.556	5.838	29	0	0.6937	4
80	5.75	5.329	22	0	0.6608	4

Table SII. Test set with chosen descriptors (arranged in descending order of pIC_{50} values)

Table SIII. Elaboration on chosen descriptors

Sr.No.	Descriptors	Class	Description		
1.	nBM	constitutional descriptors	number of multiple bond		
2.	C-001	atom centred fragments	CH3R/CH4		
3.	Mv	constitutional descriptors	mean atomic vander waals volume (scaled on carbon atom)		
4.	CATS2D_08_DL	pharmacophore descriptors	CATS2D donor-lipophilic at lag 8		
5.	C-014	atom centred fragments	CX4		