

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 88 (12) S399–S406 (2023)

SUPPLEMENTARY MATERIAL TO Synthesis, spectroscopic characterization and DFT analysis of dichlorido(η^6 -p-cymene)ruthenium(II) complexes with isonicotinate-polyethylene glycol ester ligands

THOMAS EICHHORN¹, DUŠAN DIMIĆ², ZORAN MARKOVIĆ³ and GORAN N. KALUĐEROVIĆ^{1*}

¹Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany, ²University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia and ³Institute of Information Technologies, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia

J. Serb. Chem. Soc. 88 (12) (2023) 1335-1354

ANALYTICAL AND SPECTRAL DATA OF THE SYNTHESIZED COMPOUNDS

2-(2-Methoxyethoxy)ethyl iso-nicotinate hydrochloride (L2·HCl)

Properties: Viscous, hygroscopic oil; soluble in water, methanol, ethanol, *iso*propanol, insoluble in diethyl ether.

¹H-NMR (400 MHz, D₂O): δ 3.33 (s, 3H, OCH₃), 3.63, 3.74 (m, 4H, CH₃OCH₂CH₂), 3.95 (m, 2H, COOCH₂CH₂), 4.63 (m, 2H, COOCH₂), 8.59 (d, ³J_{H,H} = 6.8 Hz, 2H, H³), 9.03 (d, ³J_{H,H} = 6.8 Hz, 2H, H²). ¹³C-NMR (100 MHz, D₂O): δ 58.0 (CH₃O), 66.0 (CH₂OOC), 68.1, 69.5, 70.9 (CH₂O), 126.9 (C³), 142.6 (C²), 145.9 (C⁴), 163.2 (COO). ESI-HRMS (CH₃OH), positive mode: Calcd for [C₁₁H₁₆NO₄]⁺ 226.10738, *m*/*z* 226.10738 [M+H]⁺. IR: v (cm⁻¹) 3068(w), 2877(w), 2400(b), 2100(w), 2022(w), 1916(w), 1731(s), 1635(w), 1605(m), 1501(w), 1450(w), 1282(s), 1239(m), 1198(w), 1100(s), 998(m), 845(m), 754(s), 684(m), 359(w). Yield: 88%.

2-[2-(2-Methoxyethoxy)ethoxy]ethyl iso-nicotinate hydrochloride (L3·HCl)

Properties: Viscous, hygroscopic oil; soluble in water, methanol, ethanol, *iso*propanol, chloroform, and dichloromethane, insoluble in diethyl ether.

¹H-NMR (400 MHz, D₂O): δ 3.35 (s, 3H, OCH₃), 3.60, 3.70, 3.72, 3.79 (m, 8H, OCH₂CH₂O), 3.98 (m, 2H, COOCH₂CH₂), 4.66 (m, 2H, COOCH₂), 8.62 (d, ³J_{H,H} = 6.8 Hz, 2H, H³), 9.04 (d, ³J_{H,H} = 6.8 Hz, 2H, H²). ¹³C-NMR (100 MHz, D₂O): δ 58.0 (CH₃O), 66.1 (CH₂OOC), 68.2, 69.4, 69.5, 69.7, 70.9 (CH₂O), 127.0 (C³), 142.6 (C²), 145.9 (C⁴), 163.3 (COO). ESI-HRMS (CH₃OH), positive mode: Calcd for [C₁₃H₂₀NO₅]⁺ 270.13360, *m/z* 270.13351 [M+H]⁺. IR: v (cm⁻¹) 3073(w), 2875(w), 2400(b), 2100(w), 2026(w), 1916(w), 1730(s), 1635(w), 1607(m), 1500(w), 1450(w), 1282(s), 1239(m), 1198(w), 1098(s), 998(m), 845(m), 758(s), 685(m), 363(w). Yield: 95%.

^{*} Corresponding author. E-mail: goran.kaluderovic@hs-merseburg.de

EICHHORN et al

2-(2-Hydroxyethoxy)ethyl isonicotinate hydrochloride (L4·HCl)

Properties: Viscous, colourless oil; soluble in water, methanol, ethanol, *iso*propanol, acetone, chloroform, and dichloromethane, insoluble in diethyl ether.

¹H-NMR (400 MHz, D₂O): δ 3.77 (m, 4H, HOC*H*₂C*H*₂), 4.00 (m, 2H, COOCH₂C*H*₂), 4.69 (m, 2H, COOC*H*₂), 8.60 (d, ${}^{3}J_{H,H} = 6.8$ Hz, 2H, H^{3}), 9.04 (d, ${}^{3}J_{H,H} = 6.8$ Hz, 2H, H^{2}). ¹³C-NMR (100 MHz, D₂O): δ 60.3 (CH₂OH), 66.1 (CH₂OOC), 68.1 (CH₂CH₂OOC), 71.8 (CH₂CH2OH), 126.9 (C³), 142.7 (C²), 145.9 (C⁴), 163.4 (COO). ESI-HRMS (CH₃OH), positive mode: Calcd for [C₁₀H₁₄NO₄]⁺ 212.09173, *m*/*z* 212.09176 [M+H]⁺. IR: v (cm⁻¹) 3350(b), 3080(w), 2872(w), 2440(b), 2100(w), 1730(s), 1637(w), 1604(w), 1502(w), 1451(w), 1404(w), 1282(s), 1119(s), 1068(m), 1002(m), 925(w), 889(w), 839(m), 754(s), 678(m), 520(w), 357(w), 255(w).

2-[2-(2-Methylamino-benzoyloxy)ethoxy]ethyl iso-nicotinate (L5)

Properties: Viscous oil, which crystallized upon standing, soluble in methanol, ethanol, *iso*propanol, chloroform, and dichloromethane, and insoluble in diethyl ether and water.

¹H-NMR (400 MHz, CDCl₃): δ 2.89 (s, 3H, NCH₃), 3.87 (m, 4H, OCH₂), 4.43, 4.53 (t, ${}^{3}J_{\text{H,H}} = 6.8$ Hz, 4H, COOCH₂), 6.53 (t, ${}^{3}J_{\text{H,H}} = 7.6$ Hz, 1H, H⁹), 6.65 (d, ${}^{3}J_{\text{H,H}} = 8.5$ Hz, 1H, H⁷), 7.37 (ddd, ${}^{3}J_{\text{H,H7}} = 7.8$ Hz, ${}^{3}J_{\text{H,H9}} = 7.1$ Hz, ${}^{4}J_{\text{H8,H10}} = 1.7$ Hz, 1H, H⁸), 7.84 (d, ${}^{3}J_{\text{H,H}} = 6.0$ Hz, 2H, H³), 7.88 (dd, ${}^{3}J_{\text{H,H9}} = 8.0$ Hz, ${}^{4}J_{\text{H0,H8}} = 1.6$ Hz 1H, H¹⁰), 8.71 (d, ${}^{3}J_{\text{H,H}} = 6.1$ Hz, 2H, H²). 13 C-NMR (100 MHz, CDCl₃): δ 29.7 (NCH₃), 63.2, 65.0 (CH₂OOC), 69.0, 69.4 (CH₂CH₂OOC), 109.7 (C⁵), 110.9 (C⁷), 114.5 (C⁹), 123.4 (C³), 131.7 (C¹⁰), 135.0 (C⁸), 138.1 (C⁴), 149.8 (C²), 152.2 (C⁶), 164.9, 168.5 (COO). ESI-HRMS (CH₃OH), positive mode: Calcd for [C₁₈H₂₁N₂O₅]⁺ 345.14450, *m/z* 345.14451 [M+H]⁺. IR: v (cm⁻¹) 3372(m), 2950(w), 2885(w), 2825(w), 1718(s), 1684(s), 1603(w), 1580(m), 1518(m), 1454(w), 1431(m), 1408(m), 1375(m), 1322(m), 1278(m), 1261(s), 1243(s), 1180(s), 1134(s), 1117(s), 1093(s), 1063(m), 1040(m), 1021(m), 952(m), 894(w), 877(w), 867(w), 850(w), 753(s), 700(s), 675(m), 605(m), 575(m), 533(m), 512(m), 275(m), 217 (w). UV-vis (1.74×10⁻⁴ M, CHCl₃, 298 K): λ_{max} 358 nm ($\varepsilon = 5747$ M⁻¹ cm⁻¹).

$Dichlorido(\eta^{6}-p-cymene)(diethylene glycol monomethyl ether isonicotinate-\kappa N)ruthenium(II)$ (2)

Properties: Orange powder; soluble in chloroform, dichloromethane, dimethylformamide, acetone, and acetonitrile, moderately soluble in methanol, ethanol, *iso*propanol, and tetrahydrofuran, insoluble in diethyl ether and toluene.

EA: Anal. Found: C, 47.00; H, 5.18; N, 2.65. Calcd for $C_{21}H_{29}Cl_2NO_4Ru$ (531.43): C, 47.46; H, 5.50; N, 2.64. ¹H-NMR (400 MHz, CDCl₃): δ 1.31 (d, ³J_{H,H} = 7.0 Hz, 6H, CH(CH₃)₂), 2.09 (s, 3H, CCH₃), 2.98 (sept, ³J_{H,H} = 7.0 Hz, 1H, CH(CH₃)₂), 3.38 (s, 3H, OCH₃), 3.56, 3.68 (m, 4H, OCH₂), 3.83 (t, ³J_{H,H} = 4.7 Hz, 2H, COOCH₂CH₂), 4.53 (t, ³J_{H,H} = 4.6 Hz, 2H, COOCH₂), 5.23 (d, ³J_{H,H} = 5.9 Hz, 2H, CHCCH₃), 5.45 (d, ³J_{H,H} = 5.8 Hz, 2H, CHCHCCH₃), 7.85 (d, ³J_{H,H} = 6.5 Hz, 2H, H³), 9.23 (d, ³J_{H,H} = 6.5 Hz, 2H, H²). ¹³C-NMR (100 MHz, CDCl₃): δ 18.4 (CCH₃), 22.4 (C(CH₃)₂), 30.8 (C(CH₃)₂), 59.2 (CH₃O), 65.1 (CH₂OOC), 70.3 (CH₂O), 82.5, 83.3 (CH), 97.5, 103.9 (CCH), 123.7 (C³), 138.7 (C⁴), 155.9 (C²), 163.9 (COO). ESI-HRMS (CH₃OH), positive mode: Calcd for [C₂₁H₂₉CINO₄⁹⁶Ru]⁺ 490.08556, *m*/*z* 490.08544 [M-Cl]⁺. IR: v (cm⁻¹) 3062(w), 2964(w), 2878(w), 1728(s), 1556(w), 1468(w), 1451(w), 1414(m), 1377(w), 1323(w), 1275(s), 1228(w), 1202(w), 1107(s), 1056(m), 1027(m), 863(m), 769(m), 695(m), 659(w), 451(w), 371(w), 284(s), 232(s).

S400

SUPPLEMENTARY MATERIAL

$Dichlorido(\eta^{6}-p-cymene)(triethylene glycol monomethyl ether iso-nicotinate-\kappa N)ruthenium(II)$ (3)

Properties: Orange powder; soluble in chloroform, dichloromethane, dimethylformamide, acetone, and acetonitrile, moderately soluble in methanol, ethanol, *iso*propanol, and tetrahydrofuran, insoluble in diethyl ether and toluene.

EA: Anal. Found: C, 47.58; H, 5.31; N, 2.47. Calcd for $C_{23}H_{33}Cl_2NO_5Ru$ (575.49): C, 48.00; H, 5.78; N, 2.43. ¹H-NMR (400 MHz, CDCl₃): δ 1.31 (d, ³J_{H,H} = 6.9 Hz, 6H, CH(CH₃)₂), 2.09 (s, 3H, CCH₃), 2.98 (sept, ³J_{H,H} = 6.9 Hz, 1H, CH(CH₃)₂), 3.37 (s, 3H, OCH₃), 3.54, 3.64, 3.67, 3.68 (m, 8H, OCH₂), 3.83 (t, ³J_{H,H} = 4.6 Hz, 2H, COOCH₂CH₂), 4.52 (t, ³J_{H,H} = 4.6 Hz, 2H, COOCH₂), 5.23 (d, ³J_{H,H} = 5.9 Hz, 2H, CHCCH₃), 5.45 (d, ³J_{H,H} = 5.9 Hz, 2H, CHCHCCH₃), 7.85 (d, ³J_{H,H} = 6.5 Hz, 2H, H³), 9.22 (d, ³J_{H,H} = 6.5 Hz, 2H, H²). ¹³C-NMR (100 MHz, CDCl₃): δ 18.4 (CCH₃), 22.4 (C(CH₃)₂), 30.8 (C(CH₃)₂), 59.2 (CH₃O), 65.5 (CH₂OOC), 69.0, 70.7, 70.8, 70.8, 72.1 (CH₂O), 82.5, 83.2 (CH), 97.5, 103.9 (CCH), 123.7 (C³), 138.8 (C⁴), 155.9 (C²), 163.9 (COO). ESI-HRMS (CH₃OH), positive mode: Calcd for [C₂₃H₃₃CINO₅⁹⁶Ru]⁺ 534.11178, *m*/z 534.11174 [M-Cl]⁺. IR: v (cm⁻¹) 3063(w), 2964(w), 2876(w), 1732(s), 1556(w), 1475(w), 1451(w), 1414(m), 1367(w), 1319(w), 1279(s), 1202(w), 1144(m), 1104(s), 1090(s), 1053(m), 1028(m), 947(w), 867(m), 849(m), 802(w), 769(m), 655(w), 518(w), 455(w), 371(w), 283(s), 232(s).

$Dichlorido(\eta^6-p-cymene)((3-oxa-5-hydroxy)-pentyl isonicotinate-\kappa N)ruthenium(II) (4)$

Properties: Orange powder; soluble in chloroform, dichloromethane, dimethylformamide, acetone, and acetonitrile, moderately soluble in methanol, ethanol, *iso*propanol, and tetrahydrofuran, insoluble in diethyl ether and toluene.

EA: Anal. Found: C, 45.98; H, 5.16; N, 2.70. Calcd for $C_{20}H_{27}Cl_2NO_4Ru$ (518.21): C, 46.36; H, 5.25; N, 2.70. ¹H-NMR (400 MHz, CDCl₃): δ 1.32 (d, ³J_{H,H} = 6.9 Hz, 6H, CH(CH₃)₂), 2.10 (s, 3H, CCH₃), 2.99 (sept, ³J_{H,H} = 6.9 Hz, 1H, CH(CH₃)₂), 3.64, 3.76, 3.85 (m, 6H, OCH₂), 4.54 (m, 2H, COOCH₂), 5.24 (d, ³J_{H,H} = 5.9 Hz, 2H, CHCCH₃), 5.46 (d, ³J_{H,H} = 5.8 Hz, 2H, CHCHCCH₃), 7.85 (d, ³J_{H,H} = 6.4 Hz, 2H, H³), 9.24 (d, ³J_{H,H} = 6.4 Hz, 2H, H²). ¹³C-NMR (100 MHz, CDCl₃): δ 18.4 (CCH₃), 22.4 (C(CH₃)₂), 30.8 (C(CH₃)₂), 61.9, 65.4, 68.9, 72.6 (CH₂O), 82.5, 83.2 (CH), 97.6, 104.0 (CCH), 123.7 (C³), 138.7 (C⁴), 156.0 (C²), 164.0 (COO). ESI-HRMS (CH₃OH), positive mode: Calcd for [C₂₀H₂₇ClNO₄⁹⁶Ru]⁺ 476.06991, *m*/*z* 476.06973 [M-Cl]⁺. IR: v (cm⁻¹) 3450(b), 3063(w), 2962(w), 2878(w), 1728(s), 1471(w), 1414(m), 1382(w), 1323(w), 1278(s), 1228(m), 1120(s), 1061(s), 932(w), 866(m), 800(w), 771(s), 698(m), 659(w), 451(w), 400(w), 371(w), 355(w), 286(s), 233(s).

$Dichlorido(\eta^{6}-p-cymene)[2-\{2-(2-methylamino-benzoyloxy)-ethoxy\}-ethyl isonicotinate-kN]ruthenium(II) (5)$

Properties: Yellow powder; soluble in chloroform, dichloromethane, moderately soluble in methanol, ethanol, *iso*propanol, insoluble in diethyl ether.

EA: Anal. Found: C, 51.83; H, 4.99; N, 4.09. Calcd for C₂₈H₃₄Cl₂N₂O₅Ru (650.56): C, 51.70; H, 5.27; N, 4.31. ¹H-NMR (400 MHz, CDCl₃): δ 1.30 (d, ³J_{H,H} = 6.9 Hz, 6H, CH(CH₃)₂), 2.07 (s, 3H, CCH₃), 2.90 (s, 3H, NCH₃), 2.97 (sept, ³J_{H,H} = 6.9 Hz, 1H, CH(CH₃)₂), 3.86 (m, 4H, OCH₂), 4.43, 4.52 (m, 4H, COOCH₂CH₂), 5.21 (d, ³J_{H,H} = 5.5 Hz, 2H, CHCCH₃), 5.44 (d, ³J_{H,H} = 5.5 Hz, 2H, CHCHCCH₃), 6.59 (t, ³J_{H,H} = 7.5 Hz, 1H, H⁹), 6.69 (d, ³J_{H,H} = 8.3 Hz, 1H, H⁷), 7.40 (t, ³J_{H,H} = 7.8 Hz, 1H, H⁸), 7.79 (d, ³J_{H,H} = 5.8 Hz, 2H, H³), 7.90 (d, ³J_{H,H} = 8.0 Hz, 1H, H¹⁰), 9.17 (d, ³J_{H,H} = 5.8 Hz, 2H, H²). ¹³C-NMR (100 MHz, CDCl₃): δ 18.3 (CCH₃), 22.4 (C(CH₃)₂), 29.8 ((b), NCH₃), 30.8 (C(CH₃)₂), 63.2, 65.3 (CH₂OOC), 68.9, 69.4 (CH₂OCH₂), 82.5, 83.2 (CH_{cvm}), 97.5, 103.9 (CCH_{cvm}), 109.8 ((b),

EICHHORN et al.

C⁵), 111.2 ((b), C⁷), 114.7 ((b), C⁹), 123.6 (C³), 131.6 (C¹⁰), 135.0 (C⁸), 138.6 (C⁴), 152.2 ((b), C⁶), 155.9 (C²), 163.9, 168.4 (COO). ESI-HRMS (CH₃OH), positive mode: Calcd for $[C_{28}H_{34}ClN_2O_5^{.96}Ru]^+$ 609.12267, *m/z* 609.12286 [M-Cl]⁺. IR: ν (cm⁻¹) 3372(w), 3059(w), 2964(w), 2872(w), 2819(w), 1734(s), 1676(s), 1604(w), 1576(m), 1516(m), 1442(w), 1413(m), 1378(w), 1322(w), 1278(s), 1236(s), 1120(s), 1084(s), 1057(m), 948(w), 858(m), 762(s), 702(s), 662(w), 528(m), 283(s), 234(s). UV-vis (7.01×10⁻⁵ M, CHCl₃, 298 K): λ_{max} s51 nm (ε = 11689 M×cm⁻¹). Fluorescence (7.01×10⁻⁵ M, CHCl₃, 298 K): λ_{max, excitation} 367 nm, λ_{max, emission} 418 nm.

Table S-I. Second order perturbation theory parameters and occupancies for the selected interactions within investigated ligands and complexes

	L1		
Donor (i)	Acceptor (j)	E2/ kJ mol-1	
π(C-C)	π*(C-C)	76	
π(C-C)	π*(C-C)	95	
π(C-N)	$\pi^*(C-C)$	60	
π(C-C)	$\pi^*(C-N)$	109	
LP(N)	π*(C-C)	41	
LP(O)	$\pi^*(C-C)$	75	
LP(O)	π*(C-O)	135	
	1		
π(C-C)	π*(C-C)	46	
π(C-C)	π*(C-C)	55	
π(C-C)	LP*(Ru)	60	
π(C-C)	LP*(Ru)	80	
LP(N)	σ*(Ru–Cl)	27	
π(C-N)	LP*(Ru)	50	
LP(Cl)	LP*(Ru)	34	
LP(Cl)	LP*(Ru)	75	
LP(Cl)	σ(Ru–Cl)	5	
	L4		
LP(O)	σ(CC)	4.8	
	L5		
LP(O)	σ(C-C)	71	
LP(O)	σ(C-O)	132	
LP(O)	π*(C-O)	105	

S402

SUPPLEMENTARY MATERIAL

Carbon store	Ligand L1·HCl		Complex 1	
	Experimental	Theoretical	Experimental	Theoretical
C^2	142.7	140.8	155.9	148.8
C^3	126.9	127.5	123.7	118.0
C^4	145.7	145.0	138.8	136.2
CH_3O	58.2	62.8	59.2	58.0
CH ₂ OOC	65.9	73.9	65.5	67.8
CH_2O	69.6	73.7	69.0	69.7
COO	163.4	158.6	163.9	159.2
С <i>С</i> Н3			18.4	18.9
C(CH3)2			22.4	22.7
C(CH3)2			30.8	35.5
Carm			70.8	83.2
Carm			72.1	83.6
Carm			82.5	84.5
Carm			83.3	86.9
CH			97.5	99.9
CCH			103.9	111.4
	R	0.99	R	0.98
	MAE [ppm]	3.5	MAE [ppm]	4.6

TABLE S-II. Experimental and theoretical ¹³C-NMR chemical shifts (in ppm) of L1 and 1

Table S-III. Experimental and theoretical ¹ H NMR chemical shifts (in	n pp	m) o	fL1	•HCl and	1
	2	1	4	-	

TT	Ligand L1·HCl		Complex 1	
nydrogen atom	Experimental	Theoretical	Experimental	Theoretical
OCH_3	3.48	3.28	3.42	3.39
OCH_2	3.92	3.60	3.72	3.55
$COOCH_2$	4.67	4.31	4.52	4.17
C^3-H	8.62	8.61	7.86	7.62
C^2-H	9.05	8.61	9.23	8.64
$CH(CH_3)_2$			1.31	1.31
CCH_3			2.09	1.67
$CH(CH_3)_2$			2.98	3.00
C _{arm} -H			5.23	4.69
C _{arm} -H			5.45	4.95
	R	0.97	R	0.99
	MAE [ppm]	0.27	MAE [ppm]	0.44

EICHHORN et al.

Carbon atom	L4·HCl		4	
Carbon atom	Experimental	Theoretical	Experimental	Theoretical
C^2	142.7	155.2	156.0	150.9
C^3	126.9	127.5	138.7	119.5
C ⁴	145.9	141.1	123.7	134.3
CH ₂ CH ₂ OH	71.8	67.4	72.6	73.4
CH ₂ CH ₂ OOC	68.1	63.8	65.4	66.7
CH ₂ OOC	66.1	62.9	68.9	68.5
CH ₂ OH	60.3	59.2	61.9	60.4
<i>C</i> 00	163.4	161.7	164.0	161.4
С <i>С</i> Н3			18.4	18.8
C(CH3)2			22.4	27.2
C(CH3)2			30.8	35.9
C _{arm}			82.5	84.4
C _{arm}			82.5	85.34
C _{arm}			83.2	85.9
C _{arm}			83.2	87.0
CH			97.6	100.6
CCH			104.0	114.1
	R	0.98	R	0.98
	MAE [ppm]	4.1	MAE [ppm]	4.5

Table S-IV. Experimental and theoretical ¹³C NMR chemical shifts (in ppm) of L4·HCl and 4

Table S-V. Experimental and theoretical ¹H NMR chemical shifts (in ppm) of L4·HCl and 4

Hydrogen atom	L4·HCl		4	
	Experimental	Theoretical	Experimental	Theoretical
OCH ₂	3.77	3.71	3.85	3.96
HOCH ₂ CH ₂	3.77	3.55	3.64	3.93
COOCH ₂ CH2	4.00	3.74	3.76	3.87
COOCH ₂	4.69	44.26	4.54	4.45
C ³ - <i>H</i>	8.60	8.64	9.24	9.13
C^2 -H	9.04	9.45	7.85	8.09
$CH(CH_3)_2$			1.32	1.38
CCH_3			2.10	1.81
CH(CH ₃) ₂			2.99	3.21
C _{arm} -H			5.24	5.01
C _{arm} -H			5.46	5.21
	R	0.99	R	0.99
	MAE [ppm]	0.24	MAE [ppm]	0.18

SUPPLEMENTARY MATERIAL

Carlan stars	L5		5	
Carbon atom	Experimental	Theoretical	Experimental	Theoretical
C^2	149.8	148.5	155.9	151.1
C^3	123.4	123.4	123.6	119.7
C ⁴	138.1	136.2	138.6	134.4
C ⁵	109.7	127.6	109.8	128.7
C ⁶	152.2	150.9	152.2	126.0
C ⁷	110.9	110.3	111.2	125.1
C ⁸	135.0	135.7	135.0	127.7
C ⁹	114.5	130.8	114.7	123.9
C ¹⁰	131.7	129.6	131.6	122.7
NCH3	29.7	29.1	29.8	29.7
CH ₂ CH ₂ OOC	69.4	67.2	69.4	68.6
CH ₂ OOC	65.0	64.0	65.3	67.3
CH ₂ CH ₂ OOC	69.0	62.8	68.9	72.3
CH ₂ OOC	63.2	61.1	63.2	69.3
<i>C</i> 00	168.5	164.2	168.4	169.4
<i>C</i> 00	164.9	156.2	163.9	161.7
С <i>С</i> Н ₃			18.3	19.1
$C(CH_3)_2$			22.4	22.8
$C(CH_3)_2$			30.8	36.3
C _{arm}			82.5	85.2
C _{arm}			82.5	85.2
C _{arm}			83.2	85.8
C _{arm}			83.2	88.3
СН			97.5	114.3
CCH			103.9	102.5
	R	0.96	R	0.95
	MAE [ppm]	4.2	MAE [ppm]	6.0

Table S-VI. Experimental and theoretical ¹³C NMR chemical shifts (in ppm) of L5 and 5

EICHHORN et al.

TT1	L5 5			
Hydrogen atom	Experimental	Theoretical	Experimental	Theoretical
NCH ₃	2.89	2.53	2.90	2.69
OCH ₂	3.87	3.88	3.86	2.85
$COOCH_2CH_2$	4.43	3.44	4.43	3.27
$COOCH_2CH_2$	4.53	3.51	4.52	3.40
C ³ - <i>H</i>	7.84	8.23	7.79	7.07
C ² - <i>H</i>	8.71	9.05	9.17	8.16
C ⁷ -H	6.65	6.81	6.69	6.74
C ⁸ -H	7.37	7.68	7.40	6.89
C ⁹ -H	6.53	6.81	6.59	6.74
C ¹⁰ -H	7.88	7.73	7.90	6.74
$CH(CH_3)_2$			1.30	0.30
CCH ₃			2.07	0.79
С <i>Н</i> (СН ₃) ₂			2.97	2.09
	R	0.95	R	0.94
	MAE [ppm]	0.40	MAE [ppm]	0.79

Table S-VII. Experimental and theoretical 1 H NMR chemical shifts (in ppm) of L5 and 5

S406