

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 89 (9) S278–S284 (2024)

SUPPLEMENTARY MATERIAL TO

Investigation of the adsorption behaviors of thymol blue, crystal violet, and rhodamine b on lichen-derived activated carbon

HÜLYA KOYUNCU 1* and ALİ RIZA KUL 2

¹Bursa Technical University, Faculty of Engineering and Natural Sciences, Chemical Engineering Department, 16310, Bursa, Turkiye and ²Van Yüzüncü Yıl University, Faculty of Science, Chemistry Department, 65080, Van, Turkiye

J. Serb. Chem. Soc. 89 (9) (2024) 1211-1226

Table S-I. Some specifications of TB, CV, and RB

* Corresponding author. E-mail: hulya.koyuncu@btu.edu.tr

S278

Available online at: http://www.shd.org.rs/JSCS

Œ

SUPPLEMENTARY MATERIAL

Fig. S-1. a) Lichen *Pseudevernia furfuracea* from Ericek-Bursa; b) lichen-derived activated carbon.

Available online at: http://www.shd.org.rs/JSCS

S279

(b)

KOYUNCU and KUL

Table S-II. The linearized versions of the PFO, PSO, IDM, Langmuir, Freundlich, and D-R models

Model Name	Model Equation	Plots axis (y ; x)	Model Parameter
PFO	$\ln\left(q_{e}-q_{t}\right)=\ln\left(q_{e}\right)-k_{1}*t$	$\ln(q_e - q_t); t$	$q_{e}, q_{t} : (mg g^{-1})$ $k_{1}: (min^{-1})$
PSO	$\frac{1}{r} = \frac{1}{r_{0} - r_{0}} + \frac{1}{r_{0}}$ $k_{0} = k_{2} * q_{\sigma}^{2}$	<u>.</u> ;t	k ₂ , k ₀ : (g mg ⁻¹ min ⁻¹)
IDM	$q_t = k_{ct} * t^{1/2} + \theta$	q_t ; t $^{1/2}$	$k_d: (mg g^{-1} min^{-1/2})$ $\theta: (mg g^{-1})$
Langmuir	$\frac{1}{m} = \frac{1}{W \cdot C \cdot m} + \frac{1}{m}$	$\frac{1}{2}$; $\frac{1}{2}$	K : (L mg ⁻¹) $C_{e:}$ (mg L ⁻¹) $d_{m:}$ (mg g ⁻¹)
Freundlich	$\ln\left(q_{o}\right) = \ln\left(k_{f}\right) + \frac{1}{n} * \ln\left(C_{o}\right)$	$\ln(q_o)$; $\ln(C_o)$	$k_{f:} (mg g^{-1})$
D-R	$\ln (q_o) = \ln (q_m) - K' * \varepsilon^2$ $\varepsilon = R * T * \ln (1 + 1/C_o)$ $E = 1/\sqrt{2 * K'}$	$\ln (q_o)$; ϵ^2	q _m , q _e : (mol g ⁻¹) € : Polanyi potential K': (mol ² kJ ⁻²) E: (kJ mol ⁻¹)

Fig. S-2. Contact angle of the LDAC.

_

SUPPLEMENTARY MATERIAL

Fig. S-3. SEM photos and EDX results of the LDAC before (a, e) and after TB (b, f), CV (c, g), RB (d, h) loaded.

Available online at: http://www.shd.org.rs/JSCS

KOYUNCU and KUL

Fig. S-4. FT-IR interferograms of the LDAC before and after TB, CV, and RB loaded.

Fig. S-5. XRD patterns of the LDAC before and after TB, CV, and RB adsorptions.

S282

SUPPLEMENTARY MATERIAL

Fig. S-6. a) Langmuir; b) Freundlich; c) D-R isotherms for TB, CV, and RB.

Available online at: http://www.shd.org.rs/JSCS

(CC) 2024 Serbian Chemical Society.

S283

Fig. S-7. The thermodynamic plots for TB, CV, and RB adsorption.

Fig. S-8. The Reusability of the LDAC for TB, CV, and RB adsorption.