

J. Serb. Chem. Soc. 88 (12) S375–S382 (2023)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO DNA/BSA interactions and cytotoxic studies of tetradentate N,N,O,O-Schiff base copper(II) complexes

ALEKSANDAR MIJATOVIĆ^{1#}, ANGELINA Z. CAKOVIĆ^{2#}, ALEKSANDAR LOLIĆ³, SNEŽANA SRETENOVIĆ⁴, MARKO N. ŽIVANOVIĆ⁵, DRAGANA S. ŠEKLIĆ⁵, JOVANA BOGOJESKI^{2#} and BILJANA V. PETROVIĆ^{2*#}

¹University of Belgrade – Faculty of Mining and Geology, Dušina 7, 11000 Belgrade, Serbia,
²University of Kragujevac, Faculty of Science, R. Domanovića 12, 34000 Kragujevac, Serbia,
³University of Belgrade – Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade,
Serbia, ⁴University of Kragujevac, Faculty of Medicinal Science, Department of Internal
medicine, S. Markovic 69, 34000 Kragujevac, Serbia and ⁵University of Kragujevac, Institute
for Information Technologies Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia

J. Serb. Chem. Soc. 88 (12) (2023) 1307-1317

THE INTRINSIC EQUILIBRIUM BINDING CONSTANT FOR DNA STUDIES

$$\frac{[DNA]}{\varepsilon_{\rm A} - \varepsilon_{\rm f}} = \frac{[DNA]}{\varepsilon_{\rm b} - \varepsilon_{\rm f}} \pm \frac{1}{K_{\rm b} / (\varepsilon_{\rm b} - \varepsilon_{\rm f})}$$
(Equation S-1)

To determine the intrinsic binding constant K_b , the ratio of the intercept of the curve [DNA]/($\varepsilon_A - \varepsilon_f$) versus [DNA], where [DNA] is the DNA concentration in base pairs and the slope was used. The apparent extinction coefficient ε_A is consistent with A_{obsd} /[complex]. The extinction coefficients ε_f and ε_b refer to the unbound and fully bound complex, respectively.

STERN-VOLMER EQUATION FOR DNA AND BSA STUDIES

Stern-Volmer quenching constant, K_{sv} , for DNA and BSA as well as the quenching rate constant, k_q , for BSA were calculated using the Stern-Volmer equation:

$$\frac{I_0}{I} = 1 + K_{sv}[Q]$$
 (Equation S-2)

In Equation S-2, the total concentration of the quencher is given by [Q], while I_0 describes the emission intensity in the absence of the quencher and the emission intensity in the presence of the quencher is described by I.

^{*} Corresponding author. E-mail: biljana.petrovic@pmf.kg.ac.rs

Fig. S-1. UV-Vis spectra of studied complexes [Cu(acac2pn)] (1), [Cu(phacac2pn)] (2), [Cu(tfacac2pn)] (3)

Fig. S-2. IR spectra of studied complexes [Cu(acac2pn)] (1), [Cu(phacac2pn)] (2), [Cu(tfacac2pn)] (3)

MIJATOVIĆ et al.

Fig. S-3. Mass spectra for complex [Cu(acac2pn)] (1) (10 ng/mL MeOH).

Fig. S-4. Mass spectra for complex [Cu(phacac2pn)] (2) (10 ng/mL MeOH).

MIJATOVIĆ et al.

Fig. S-5. Mass spectra for complex [Cu(tfacac2pn)] (3) (10 ng/mL MeOH).

Fig. S-6. UV-Vis titration spectra for 8 μ M solution of complexes 2 and 3 in 0,01 M PBS with increasing ct-DNA concentration (0 - 40 μ M). Arrow shows hyperchromism in the spectral band. Insepts: Plots of [DNA]/($\varepsilon_a - \varepsilon_f$) versus [DNA] for the titration of the complexes with ct-DNA; with (\bullet) are shown the experiment data points and the full line represents the exponential fitting of the data.

```
MIJATOVIĆ et al.
```


Fig. S-7. Fluorescence titration spectra of EtBr-DNA and of EtBr (25 μM) bound to DNA (25 μM) in the presence of varying amounts of complexes 1 and 3 (phosphate buffer solution = 0,01 M, pH = 7.4). Arrow shows changes in fluorescence intensity upon increasing concentration of complexes (0-50 μM). Insert: plots of I_o/I versus [Q]; with (**■**) are shown the experimental data points and the full line represents the exponential fitting of the data.

Fig. S-8. Fluorescence titration spectra of BSA (2 μ M) at different concentrations of complexes 2 and 3 (phosphate buffer solution = 0,01 M, pH = 7.4). Arrow shows changes in fluorescence intensity upon increasing concentration of complexes (0-30 μ M). Insets: Stern-Volmer plots of the interaction with BSA.

MIJATOVIĆ et al.

Fig. S-9. Effects of 1 on HCT-116 cells, expressed as the complex concentations related to the number of viable cells after 24 and 72 h of exposure.

Fig. S-10. Effects of 2 on HCT-116 cells, expressed as the complex concentrations related to the number of viable cells after 24 and 72 h of exposure.

Fig. S-11. Effects of 3 on HCT-116 cells, expressed as the complex concentrations related to the number of viable cells after 24 and 72 h of exposure.

Fig. S-12. Effects of complex 1 on to MRC-5 cells, expressed as the complex concentrations related to the number of viable cells after 24 and 72 h of exposure.

Fig. S-13. Effects of complex 2 on to MRC-5 cells, expressed as the complex concentrations related to the number of viable cells after 24 and 72 h of exposure.

Fig. S-14. Effects of complex 3 on to MRC-5 cells, expressed as the complex concentrations related to the number of viable cells after 24 and 72 h of exposure.