

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS 8 (2023) Supplementary material

J. Serb. Chem. Soc. 88 (12) S387–S398 (2023)

SUPPLEMENTARY MATERIAL TO Diorganotin(IV) complexes with hydroxamic acids derivatives of some histone deacetylases inhibitors

DANIJELA N. NIKOLIĆ^{1,2}, MARIJA S. GENČIĆ¹*, JELENA M. AKSIĆ¹, NIKO S. RADULOVIĆ¹, DUŠAN S. DIMIĆ³ and GORAN N. KALUĐEROVIĆ²**

¹University of Niš, Faculty of Sciences and Mathematics, Department of Chemistry, Višegradska 33, 18000 Niš, Serbia, ²University of Applied Sciences Merseburg, Department of Engineering and Natural Sciences, Eberhard-Leibnitz-Straße 2, DE-06217 Merseburg, Germany and ³University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia

J. Serb. Chem. Soc. 88 (12) (2023) 1319–1334

SPECTRAL AND ANALYTICAL DATA OF LIGAND PRECURSORS AND COMPLEXES

N-hydroxy-4-phenylbutanamide (*HL*₁): Yield 434 mg (34.3%). Colorless crystals. IR (ATR): 3174w (v(N-H)), 2979m, 2946m (v(CH₂)_{as}), 2602m, 2496m, 1647m (v(C=O)), 1474s (δ (CH₂)_{sc}), 1383m, 1364w, 1172m, 1035s, 851w, 807m, 757m (γ (C-H), 700m (Φ (C=C)), cm⁻¹. ¹H NMR (400 MHz, CDCl₃, δ): 7.25 (*dd*, 2H, *J*₃ = 7.5, 7.0, H-7 and H-9), 7.18 (*d*, 1H, *J*₃ = 7.0, H-8), 7.13 (*d*, 2H, *J*₃ = 7.5, H-6 and H-10), 2.60 (*t*, 2H, *J*₃ = 7.3, H-4), 2.10 (*bt*, 2H, *J*₃ = 7.0, H-2), 1.93 (*tt*, 2H, *J*₃ = 7.3, 7.0, H-3). ¹³C NMR (100.6 MHz, CDCl₃, δ): 170.73 (C=O), 140.44 (C-5), 127.87 (C-6 and C-10 or C-7 and C-9), 127.85 (C-6 and C-10 or C-7 and C-9), 125.50 (C-8), 34.33 (C-4), 31.49 (C-2), 26.13 (C-3). ¹H NMR (400 MHz, DMSO-*d*₆, δ): 10.39 (*bs*, 1H, N-H), 8.77 (*bs*, 1H, O-H), 7.28 (*m*, 2H, H-6 and H-10), 7.18 (*m*, 3H, H-7, H-8 and H-9), 2.55 (*t*, 2H, *J*₃ = 7.1, H-4), 1.98 (*t*, 2H, *J*₃ = 7.4, 7.1, 2H, H-3). ¹³C NMR (100.6 MHz, DMSO-*d*₆, δ): 169.12 (C=O), 141.90 (C-5), 128.54 (C-6 and C-10), 126.03 (C-7, C-8 and C-9), 34.85 (C-4), 32.02 (C-2), 27.25 (C-3).

N-hydroxy-2-propylpentanamide (*HL*₂): Yield 508 mg (45.7%). Colorless crystals. IR (ATR): 3176w (v(N-H)), 3026w, 2957m (v(CH₃)_{as}), 2930m (v(CH₂)_{as}), 2873m (v(CH₂)_s), 1627s (v(C=O)), 1536m (v(C-N) + v(CNH)_{bend}), 1464s (δ (CH₂)_{sc}), 1381m, 1273w, 1113w, 1041m, 990w, 949m, 891w, 756m, cm⁻¹. ¹H NMR (400 MHz, CDCl₃, δ): 1.98 (*m*, 1H, H-2), 1.60 (*m*, 2H, H-3A), 1.40 (*m*, 2H, H-3B), 1.28 (*m*, 4H, H-4), 0.88 (*t*, *J*₃ = 7.2, 6H, H-5). ¹³C NMR (100.6 MHz, CDCl₃, δ): 174.47 (C=O), 44.15 (C-2), 34.83 (C-3), 20.80 (C-4), 14.15 (C-5). ¹H NMR (400 MHz, DMSO-*d*₆, δ): 10.36 (*s*, 1H, N-H), 8.68 (*s*, 1H, O-H), 1.96 (*m*, 1H, H-2), 1.43 (*m*, 2H, H-3A), 1.20 (*m*, 6H, H-3B and H-4), 0.83 (*t*, 6H, *J*₃ = 7.2, H-5). ¹³C NMR (100.6 MHz, DMSO-*d*₆, δ): 171.39 (C=O), 41.89 (C-2), 34.45 (C-3), 19.97 (C-4), 13.78 (C-5).

^{*,**} Corresponding authors. E-mail: (*)marija.gencic@pmf.edu.rs;

^(**)goran.kaluderovic@hs-merseburg.de

NIKOLIĆ et al.

[*Ph*₂Sn(*L*₁)₂] (1): Yield 164 mg (94.8%). Colorless solid. IR (ATR): 3141w (v(N-H)), 2929w (v(CH₂)_{as}), 1596m (v(C=O)), 1519m (v(C-N) + v(CNH)_{bend}), 1496m, 1454m (δ (CH₂)_{sc}), 1430m, 1363w, 1299w, 1152w, 1087w, 1071m, 992m, 952m, 731m (γ (C-H), 700s (Φ (C=C))), 540m (v(Sn-O)), cm⁻¹. ¹H NMR (400 MHz, CDCl₃, δ): 7.75 (*dd*, 4H , *J*₃ = 6.60, *J*₄ = 2.90, H-2' and H-6'), 7.345 (*dd*, 4H, *J*₃ = 7.00, 6.60, H-3' and H-5'), 7.335 (*dd*, 2H, *J*₃ = 7.00, *J*₄ = 2.90, H-4'), 7.22 (*dd*, 4H, *J*₃ = 7.60, 7.20, H-7 and H-9), 7.15 (*dd*, 2H, *J*₃ = 7.60, *J*₄ = 1.70, H-8), 7.07 (*ddd*, 4H, *J*₃ = 7.00, H-2), 1.89 (*tt*, 4H, *J*₃ = 7.70, 7.00. H-3). ¹³C NMR (100.6 MHz, CDCl₃, δ): 167.32 (C=O), 145.79 (C-1'), 141.10 (C-5), 134.86 (C-2' and C-6'), 129.86 (C-4'), 128.70 (C-3' and C-5'), 128.61 (C-6 and C-10), 128.59 (C-7 and C-9), 126.21 (C-8), 34.79 (C-4), 30.73 (C-2), 26.95 (C-3). ¹¹⁹Sn NMR (149.2 MHz, CDCl₃, δ): -402.41 (*s*, Sn). Combustion analysis for C₁₅H₁₈N₂O₄Sn: Calculated. C 61.05 H 5.45, N 4.42; found C 60.93 H 5.57, N 4.45.

[*Ph*₂Sn(*L*₂)₂] (2): Yield 98 mg (89 %). Colorless solid. IR (ATR): 3176w (v(N-H)), 3048w, 2956s (v(CH₃)_{as}), 2930m (v(CH₂)_{as}), 2871m (v(CH₂)_s), 1589s (v(C=O)), 1525m (v(C-N) + v(CNH)_{bend}), 1464m (δ (CH₂)_{sc}), 1429m, 1380m, 1277w, 1120m, 1073m, 1045m, 995m, 953m, 899w, 728m (γ (C-H), 697s (Φ (C=C)), 540m (v(Sn-O)), cm⁻¹. ¹H NMR (400 MHz, CHCl₃, δ): 7.59 (*m*, 4H, H-2' or H-3'), 7.30 (*m*, 2H, H-4'), 7.27 (*m*, 4H, H-2' or H-3'), 1.96 (*m*, 2H, H-2), 1.54 (*m*, 4H, H-3A), 1.28 (*m*, 8H, H-3B and H-4A), 1.07 (*m*, 4H, H-4B), 0.76 (*m*, 12H, CH_{3A} and CH_{3B}). ¹³C NMR (100.6 MHz, CDCl₃, δ): 169.52 (C=O), 148.29 (C-1'), 135.56 (C-2' or C-3'), 128.38 (C-4'), 127.94 (C-2' or C-3'), 43.35 (C-2), 34.35 (C-3), 20.49 (C-4), 14.10 (C-5). ¹¹⁹Sn NMR (149.2 MHz, CDCl₃, δ): -349.95 (*s*, Sn). Combustion analysis for C₂₈H₄₂N₂O₄Sn: Calculated. C 57.06, H 7.18, N 4.75; found C 57.45, H 7.32, N 4.70.

IR SPECTRA OF LIGAND PRECURSORS AND COMPLEXES

Fig. S-1. FTIR spectrum of N-hydroxy-4-phenylbutanamide (HL1)

Fig. S-2. FTIR spectrum of $[Ph_2Sn(L_1)_2]$ (1)

Fig. S-3. FTIR spectrum of N-hydroxy-2-propylpentanamide (HL₂)

Fig. S-4. FTIR spectrum of $[Ph_2Sn(L_2)_2]$ (2)

NMR SPECTRA OF LIGAND PRECURSORS AND COMPLEXES

¹H NMR (400 MHz, CDCl₃)

Fig. S-6. ¹³C NMR spectrum (100.6 MHz, CDCl₃) of N-hydroxy-4-phenylbutanamide (HL₁)

NIKOLIĆ et al.

Fig. S-8. ¹³C NMR spectrum (100.6 MHz, CDCl₃) of N-hydroxy-2-propylpentanamide (HL₂)

80 70 60

50 40 30

150 140 130 120 110 100 90 õ[ppm] 10

20

S392

170 160

(HL₂)

S394

NIKOLIĆ et al.

-300

-100

-200

-600

-700

-500

S396

NIKOLIĆ et al.

Fig. S-17. Optimized isomers (B3LYP-D3BJ/6-311++G(d,p) level of theory) of HL_2

NIKOLIĆ et al.

11122						
¹ H chemical shifts [ppm]			¹³ C chemical shifts [ppm]			
H atom	Experimental	Theoretical	C atom	Experimental	Theoretical	
С5-Н	0.88	0.88	C5	14.2	15.8	
С4-Н	1.28	1.28	C4	20.8	27.2	
С3-Н	1.40	1.30	C3	34.8	38.5	
С2-Н	1.98	2.06	C2	44.1	49.6	
O-H	8.68	6.98	C1	174.5	171.5	
N-H	10.36	7.66				
R		0.978	R		0.994	
MAE [ppm]		0.04	MAE [ppm]		4.0	

Table S-I. Experimental and theoretical (at B3LYP-D3BJ/6-311++G(d,p) level of theory) of HL₂

Table S-II. Experimental and theoretical (at B3LYP-D3BJ/6-311++G(d,p) level of theory) of complex 2.

¹ H chemical shifts [ppm]			¹³ C chemical shifts [ppm]		
H atom	Experimental	Theoretical	C atom	Experimental	Theoretical
С5-Н	0.76	0.58	C5	14.1	16.5
C4-HA	1.07	0.78	C4	20.5	22.0
C4-HB	1.28	0.89	C3	34.4	38.1
C3-HA	1.28	0.95	C2	43.4	48.0
C3-HB	1.54	1.29	C2'	127.9	133.7
С2-Н	1.96	1.53	C6'	127.9	125.0
С2'-Н	7.27	7.22	C4'	128.3	128.7
С6'-Н	7.27	7.22	C3'	135.6	130.0
С4'-Н	7.30	7.28	C5'	135.6	130.0
С3'-Н	7.59	7.54	C1'	148.3	147.7
С5'-Н	7.59	8.08	C1	169.5	169.6
R		0.992	R		0.991
MAE [ppm]		0.22	MAE [ppm]		3.0