

J. Serb. Chem. Soc. 89 (7–8) S229–S240 (2023)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO New pyrene and fluorene-based π-conjugated Schiff bases: Theoretical and experimental investigation of optical properties

YUNUSCAN SİVRİKAYA¹, HANDAN CAN SAKARYA²*, GÖKHAN KILIÇ³, SULTAN FUNDA EKTİ⁴ and MERVE YANDIMOĞLU²

¹Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey, ²Department of Chemistry, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkey, ³Department of Physics, Faculty of Science, Eskişehir Osmangazi University, Eskişehir, Turkey and ⁴Department of Chemistry, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey.

J. Serb. Chem. Soc. 89 (7-8) (2024) 1025-1038

EXPERIMENTAL

i: EtOH, 75 °C, reflux, %5 HCl, N₂(g)

Scheme S-1. Synthesis method and numbers of protons.

SPECTROSCOPIC DATA OF MAIN COMPOUNDS

N-(pyren-1-ylmethylene)-4-methylbenzo[d]thiazol-2-amine (7a) Yield: 50 %, mp. 212-216 °C. FT-IR (KBr, cm⁻¹): 3038 (Aromatic C-H), 2965-2918 (Aliphatic C-H), 1593 (CH=N),

*Corresponding author. E-mail: hsakarya@ogu.edu.tr

S229

-1576, 1537 and 1478 (C=C) (Fig.S1). ¹H NMR (500 MHz, DMSO- d_6 , δ ppm): 9.98 (s, 1H, CH=N), 9.28 (d, 1H, J=9 Hz, H17), 8.84 (d, 1H, J= 7 Hz, H10), 8.44 (m, 5H, H9, H11, H14, H15, H16), 8.28 (d, 1H, J= 8.9 Hz, H13), 8.15 (t, 1H, J= 8.6 Hz, H12), 7.88 (dd, 1H, H6), 7.31 (d, 2H, H5 ve H7), 2.45 (s, 3H) (Fig.S2). ¹³C NMR (125 MHz, DMSO- d_6 , δ ppm): 135.0 (CH=N), 134.36, 132.80, 131.74, 131.21, 130.86, 130.61, 130.53, 129.08, 127.09, 127.67, 127.59, 127.50, 127.41, 125.83, 124.51, 123.93, 123.28, 120.25. ESI-MS (m/z): 377.68 (M⁺), 378.71 (M⁺+1), 379.77 (M⁺+2), 245.48 (M⁺-C₈H₈N₂S), 165.15 (M⁺-C₁₇H₁₉). Anal. Calcd. for C₂₅H₁₆N₂S: C, 79.76; H, 4.28; N, 7.44; S, 8.52. Found: C, 79.52; H, 4.44; N, 7.37; S, 8.40.

N-(9*H*-fluoren-3-ylmethylene)-4-methylbenzo[d]thiazol-2-amine (9a) Yield: 60 %, mp. 180-183 °C. FT-IR (KBr, cm⁻¹): 3046 (Aromatic C-H), 2957, 2910 (Aliphatic C-H), 1620 (CH=N), 1586, 1549 and 1518 (C=C) (Fig.S3). ¹H NMR (500 MHz, DMSO- d_6 , δ ppm): 9.14 (s, 1H, -CH=N-), 8.26 (s, 1H, H9), 8.07 (d, 2H, J=1.5 Hz H14 and H15), 7.99 (d, 1H, J= 7.0 Hz, H7), 7.80 (dd, 1H, J=2.5 Hz, J=8 Hz, H10), 7.62 (d, 1H, J=8.0 Hz, H5), 7.39 (t, 1H, J=7.5 Hz, H6 and dt, 1H, J=8 Hz, H12), 7. 28 (d, 1H, J=8.0 Hz, H13 and t, 1H J=7 Hz, H11), 4.00 (s, 2H, Fluorene −CH₂), 2.60 (s, 3H, -CH₃) (Fig.S4). ESI-MS (m/z): 341.63 (M⁺), 342.63 (M⁺⁺1), 343.65 (M⁺⁺2), 209 (M⁺ -C₇H₅N₂S), 165.1 (M⁺-fluorine). Anal. Calcd. for C₂₂H₁₆N₂S: C, 77.62; H, 4.74; N, 8.23; S, 9.42. Found: C, 79.90; H, 4.98; N, 8.23; S, 9.40.

Fig. S-1. FT-IR spectrum of 7a.

S230

Fig. S-3. FT-IR spectrum of 9a.

Fig. S-4. ¹H NMR spectrum of compound **9a**.

Fig. S-5. Resonance structures in different solvents for compound 7a.

Fig. S-6. Resonance structures in different solvents for compound 9a.

S234

COMPUTATIONAL STUDY

Fig. S-7. Front (left) and side (right) view of the optimized structure of compound 7a.

Sum of elec	tronic and t	hermal F	ee Energies	(Hartree)= -140	69.786060
Thermal con	rrection to (Gibbs Fre	e Energy (Ha	urtree)= 0.2870	06
С	-5.7557	-4.0026	0.0403		
С	-4.8025	-4.9499	0.0676		
С	-3.5033	-4.6125	0.1156		
С	-3.1932	-3.3093	0.1353		
С	-4.1457	-2.3685	0.108		
С	-5.4488	-2.6917	0.0598		
S	-1.8702	-2.6883	0.1863		
С	-2.3634	-1.2992	0.1789		
Ν	-3.6308	-1.2171	0.1341		
Ν	-1.7306	-0.1971	0.2101		
С	-0.4709	-0.0485	0.2569		
С	-0.5637	2.2588	0.2734		
С	-0.0138	3.4781	0.3045		
С	1.319	3.6125	0.3545		
С	2.0969	2.5118	0.3727		
С	1.5341	1.2785	0.3408		
С	0.1837	1.1368	0.2906		
С	3.4378	2.6806	0.4232		
С	4.2568	1.6119	0.4431		
С	3.7152	0.3861	0.4118		
С	2.3851	0.232	0.3617		
С	3.9861	3.9133	0.4547		
С	5.3219	4.0657	0.5046		
С	6.1272	2.995	0.5239		
С	5.5916	1.7674	0.4931		
С	1.8605	4.8418	0.3857		
С	3.1895	4.994	0.4357		
С	-6.5436	-1.6528	0.0288		
Н	-6.8147	-4.3086	0.001		
Н	-5.089	-6.0151	0.0506		
Н	-2.7287	-5.3977	0.1378		
Н	0.1072	-0.9805	0.2704		
Н	-1.666	2.2343	0.2333		
Н	-0.6762	4.361	0.2885		
Н	4.3565	-0.5126	0.4267		
Н	2.0557	-0.8168	0.3395		
Н	5.7816	5.0685	0.5307		
Н	7.2219	3.123	0.5648		
Н	6.2682	0.8959	0.5096		
Н	1.2281	5.7462	0.371		
Н	3.607	6.0151	0.4605		
Н	-6.157	-0.6105	0.0607		
Н	-7.1454	-1.7565	-0.9027		
Н	-7.2219	-1.7825	0.9027		

S236

Fig. S-7. Front (left) and side (right) view of the optimized structure of compound 9a.

С 7.0316 0.69762 0.24052 С 7.26734 -0.65893 -0.0043 С 6.22069 -1.54738 -0.19256 С 4.91385 -1.06566 -0.13392 С 4.67582 0.30957 0.11157 C S 5.73912 1.20826 0.30349 3.41762 -1.94978 -0.32722 С 2.5349 -0.41676 -0.07801 Ν 3.29832 0.64939 0.13484 N 1.12015 -0.39232 -0.05995 С 0.42027 0.68441 -0.25694 С -1.04407 0.63639 -0.20738 С -1.74033 -0.55218 0.06513 С -3.12127 -0.51314 0.09489 С -3.81911 0.69399 -0.14285 С -3.13384 1.86797 -0.41156 С -1.74169 1.82843 -0.44165 С -4.09047 -1.63175 0.35997 С -5.42491 -0.94853 0.25127 С -5.25135 0.42454 -0.04592 С -6.69227 -1.48005 0.39949 С -7.79082 -0.62966 0.24879 С -7.61911 0.71905 -0.04313 С -6.34252 1.26387 -0.19443 С 5.49993 2.649 0.56448 Η 7.88589 1.36978 0.38561 Η 8.29958 -1.02318 -0.04675 Η 6.41233 -2.60878 -0.38288 Η 0.87647 1.6678 -0.4669 Η -1.2047 -1.49079 0.25044 -3.67581 2.80149 -0.59496 Η Η -1.18593 2.75032 -0.65236 -3.98584 -2.44856 -0.3778 Η -3.93785 -2.07827 1.35986 Η -6.83293 -2.54066 0.62927 Η -8.80209 -1.03412 0.36289 Η -8.49628 1.3647 -0.1563 Η -6.20451 2.3253 -0.42418 Η Η 4.94652 3.11196 -0.26377 Η 4.90548 2.78929 1.4775 Η 6.43807 3.20643 0.68978

Sum of electronic and thermal Free Energies (Hartree)=-1355.461210 Thermal correction to Gibbs Free Energy (Hartree)= 0.268929

Available online at: http://www.shd.org.rs/JSCS

S238

Fig. S-9. HOMOs and LUMOs of **7a** (left) and **9a** (right) estimated at the B3LYP/6-31G(d,p) level in the gas phase.

A dispersion component was added to the B3LYP 6-31 G (d,p) level of theory used in DFT calculations, and re-optimization and frequency calculations of the investigated 7a and 9a molecules were completed. The command line for frequency calculations with added dispersion component is given below:

freq=noraman b3lyp/6-31g(d,p) scrf=(cpcm,solvent=dmso) guess=save geom=connectivity EmpiricalDispersion=GD3BJ

First, there is no difference in the dihedral angles and therefore the geometry of the optimized structures by using the dispersion component.

Then, excited energy calculations were rerun with the freshly optimized geometries, and results were compared with previously obtained theoretical results.

When the HOMO-LUMO band gap energies of 7a and 9a were examined, narrower band gap energies were detected compared to the calculations done without using this dispersion component. The band gap energy values obtained both without and using the dispersion component tend to decrease or increase in the same way as the experimental study. However, it is seen that the band gap value obtained by adding the dispersion component deviates further from the experimental data.

S240

		Calculation with dispersion		Calculation without dispersion	
		component		component	
		The sum of thermal	Band gap	The sum of thermal	Band gap
Compound	Phase	and free energy	energy	and free energy	energy
		(Hartree)	(eV)	(Hartree)	(eV)
7.	Gas	-1469.9010	2.85	-1469.7861	2.85
/a	DMSO	-1469.9125	2.66	-1469.7974	2.87
9a -	Gas	-1355.5595	3.22	-1355.4612	3.20
	DMSO	-1355.5644	3.04	-1355.4801	3.19

Table S. I. The resu	ults of the calculation	s with and without	the dispersion componer
Table S-1. The fest	uns of the calculation	is with and without	the dispersion componer