

J. Serb. Chem. Soc. 88 (12) S407–S411 (2023)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Zn(II) complex with pyridine based 1,3-selenazolyl-hydrazone: Synthesis, structural characterization and DFT study

JOVANA B. ARAŠKOV¹, PREDRAG G. RISTIĆ^{1*}, ALEKSANDAR VIŠNJEVAC^{2**}, ANDREJ LJ. MILIVOJAC³, DRAGANA M. MITIĆ³, NENAD R. FILIPOVIĆ⁴ and TAMARA R. TODOROVIĆ¹

¹University of Belgrade – Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia, ²Division of Physical Chemistry, Institute Ruđer Bošković, Bijenička cesta 54, Zagreb 10000, Croatia, ³Innovation Centre of Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11000 Belgrade, Serbia and ⁴University of Belgrade – Faculty of Agriculture, Nemanjina 6, 11000 Belgrade, Serbia

J. Serb. Chem. Soc. 88 (12) (2023) 1355-1367

ANALYTICAL AND SPECTRAL DATA

The ligand based on (1,3-selenazol-2-yl)hydrazone. Anal. Calcd. for $C_{32}H_{28}Cl_4N_8O_2Se_2Zn_2$ (Fw = 987.08) (%): C, 38.93; H, 2.86; N, 11.35. Found: C, 39.21; H, 3.09; N, 11.16. Λ_M (1 × 10⁻³ M, MeOH) = 108.2 Ω⁻¹ cm² mol⁻¹. IR (ATR, vmax/cm⁻¹): 3099 (m), 2924 (s), 2872 (ms), 2836 (ms), 1621 (ms), 1610 (ms), 1600 (ms), 1546 (m), 1532 (ms), 1499 (s), 1469 (s), 1415 (m), 1355 (ms), 1275 (ms), 1229 (s), 1136 (ms), 1022 (ms), 944 (m), 882 (m), 708 (m), 597 (w), 514 (vw). ¹H NMR (DMSO-d₆;400 MHz) δ_H (ppm): 3.75 (s, 3H); 6.93 (d, 2H); 7.33 (dd, 1H); 7.54 (s, 1H); 7.75 (d, 2H), 7.80-7.83 (m, 2H); 8.06 (s, 1H); 8.54 (d, 1H); 12.54 (s, 1H). ¹³C {1H} NMR (DMSO-d₆;126 MHz) δ_C (ppm): 55.55, 106.26, 114.37, 119.64, 124.13, 127.51, 128.56, 137.24, 142.72, 149.90, 153.58, 159.09, 171.30.

Abbreviations used for IR spectra: s, strong; ms, medium-strong; m, medium; w, weak; vw, very weak.

Table S-I. Crystal data and structure refinement for 2-Cl-Se

Empirical formula	$C_{32}H_{28}Cl_4N_8O_2Se_2Zn_2$
Formula weight	987.08
Temperature/K	298(2)
Crystal system	monoclinic
Space group	C2/c
$a/{ m \AA}$	14.4341(3)
$b/\text{\AA}$	18.6583(4)
$c/{ m \AA}$	14.7422(7)
α/\circ	90
$eta /^{\circ}$	114.347(4)

Corresponding authors. E-mail: ()predrag@chem.bg.ac.rs, (**)visnevac@irb.hr

ARAŠKOV et al.

Figure S-1. IR spectrum of 2-Cl-Se.

S408

SUPPLEMENTARY MATERIAL

S409

ARAŠKOV et al.

Table S-II. Bond angles for **2-Cl-Se**.

e o ni Dona angleo			
Angle label	Angle / °	Angle label	Angle / °
N1-C1-N2	121.5(2)	C11-N3-N2	123.0(2)
N1–C1–Se1	116.0(2)	C11–N3–Zn1	121.0(2)
N2-C1-Se1	123.0(2)	N2-N3-Zn1	116.0 (1)
C3-C2-Se1	111.80(2)	C12–N4–Zn1	114.0(2)
C2-C3-C4	124.10(2)	C16-N4-C12	117.40(2)
C2-C3-N1	116.50(2)	C16–N4–Zn1	128.0(2)
N1-C3-C4	119.40(2)	C7-01-C10	116.80(3)
C5–C4–C3	120.40(2)	N1–Zn1–N1 ¹	91.80(1)
C5–C4–C9	118.30(2)	N1 ¹ –Zn1–N4 ¹	146.66(7)
C9–C4–C3	121.30(2)	N1–Zn1–N4 ¹	99.39(7)
C6–C5–C4	120.50(3)	N1 ¹ –Zn1–N4	99.39(7)
C5–C6–C7	120.70(2)	N1–Zn1–N4	146.66(7)
C6–C7–C8	119.40(2)	N3–Zn1–N1 ¹	122.17(7)
01–C7–C6	115.80(3)	N3 ¹ –Zn1–N1	122.17(7)
01C7C8	124.80(3)	N3–Zn1–N1	74.73(7)
C9–C8–C7	119.50(2)	N3 ¹ –Zn1–N1 ¹	74.73(7)
C8–C9–C4	121.50(2)	N3 ¹ –Zn1–N3	157.7 (1)
N3-C11-C12	115.80(2)	N3 ¹ –Zn1–N4	91.13(7)
C13-C12-C11	121.60(2)	N3 ¹ –Zn1–N4 ¹	72.74(7)
N4-C12-C11	115.50(2)	N3–Zn1–N4	72.73(7)
N4-C12-C13	122.90(2)	N3–Zn1–N4 ¹	91.13(7)
C12-C13-C14	118.70(3)	N4 ¹ –Zn1–N4	88.4(1)
C15–C14–C13	118.70(3)	Cl1 ² –Zn2–Cl1	113.66(4)
C14–C15–C16	119.40(3)	Cl1 ² –Zn2–Cl2	110.57(2)
N4-C16-C15	122.90(3)	Cl1–Zn2–Cl2 ²	110.56(2)
C1-N1-C3	112.0(2)	Cl1–Zn2–Cl2	106.22(2)
C1–N1–Zn1	113.0(2)	Cl1 ² –Zn2–Cl2 ²	106.22(2)
C3-N1-Zn1	133.0(2)	Cl2–Zn2–Cl2 ²	109.62(4)
N3-N2-C1	114.0(2)	C2–Se1–C1	84.0(2)
G 1	1 . 1/ 21	. 1/	

Symmetry code: ¹-x,+y, ¹/₂-z; ²1-x,+y, ¹/₂-z

Table S-III. Bond lengths for 2-Cl-Se.

0			
Bond type	Length / Å	Bond type	Length / Å
C1-N1	1.307(3)	C12–C13	1.382(3)
C1–N2	1.367(3)	C12–N4	1.355(3)
C1–Se1	1.873(2)	C13–C14	1.384(4)
C2–C3	1.349(4)	C14–C15	1.374(5)
C2–Se1	1.867(3)	C15–C16	1.388(4)
C3–C4	1.478(3)	C16–N4	1.329(3)
C3-N1	1.394(3)	N1–Zn1	2.16(2)
C4–C5	1.390(3)	N2–N3	1.355(3)
C4–C9	1.394(3)	N3–Zn1	2.14(2)
C5–C6	1.383(4)	N4–Zn1	2.250(2)
C6–C7	1.387(4)	Cl1–Zn2	2.275(6)
C7–C8	1.389(4)	Cl2–Zn2	2.303(7)
C7–O1	1.363(3)	Zn1–N1 ¹	2.16(2)

S410

SUPPLEMENTARY MATERIAL

C8–C9	1.385(3)	Zn1–N3 ¹	2.14(2)
C10-01	1.432(5)	Zn1–N4 ¹	2.250(2)
C11–C12	1.461(4)	Zn2–Cl1 ²	2.275(6)
C11–N3	1.275(3)	Zn2–Cl2 ²	2.303(7)
Symmetry code: ¹ -x,+y, ¹ / ₂ -z; ² 1-x,+y, ¹ / ₂ -z			

Table S-IV. Interaction pair energies in the crystal structure of 2-Cl based on the B3LYP/ DGDZVP energy model*

<i>R</i> (Å)	Interaction energy, kJ mol ⁻¹				
	E_ele	E_pol	<i>E</i> _dis	E_rep	E_tot
11,25	574,4	-58,5	-18,0	4,0	550,9
7,34	548,4	-76,5	-123,8	127,8	494,3
11,73	481,2	-43,1	-32,5	24,5	463,7
8,27	-618,0	-72,6	-10,0	13,1	-707,7
7,36	-667,3	-132,3	-27,1	35,4	-805,2
7,45	-862,4	-163,1	-30,7	103,5	-995,2
9,60	-648,4	-70,3	-12,6	22,0	-734,8
14,41	408,1	-21,4	-12,5	11,9	412,0

*E_tot represents the sum of individual components with scaling factors ($k_$ ele = 1.057; $k_$ pol = 0.740; $k_$ dis = 0.871; $k_$ rep = 0.618), while the individual components are not scaled.