

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS

ACCEPTED MANUSCRIPT

This is an early electronic version of an as-received manuscript that has been accepted for publication in the Journal of the Serbian Chemical Society but has not yet been subjected to the editing process and publishing procedure applied by the JSCS Editorial Office.

Please cite this article as H. Can Sakarya, K. Görgüna, and C. Filik Işcen, J. Serb. Chem. Soc. (2024) <u>https://doi.org/10.2298/JSC231020059C</u>

This "raw" version of the manuscript is being provided to the authors and readers for their technical service. It must be stressed that the manuscript still has to be subjected to copyediting, typesetting, English grammar and syntax corrections, professional editing and authors' review of the galley proof before it is published in its final form. Please note that during these publishing processes, many errors may emerge which could affect the final content of the manuscript and all legal disclaimers applied according to the policies of the Journal.

JSCS-12631

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Original scientific paper Published DD MM, 2024

Synthesis of novel *N*-substituted benzyl *N*-(1,3-benzothiazol-2-yl) acetamides and their *in vitro* antibacterial activities

HANDAN CAN SAKARYA^{1*}, KAMURAN GÖRGÜN¹, CANSU FILIK IŞCEN²

¹Eskişehir Osmangazi University, Faculty of Science, Department of Chemistry, 26480, Eskişehir, Turkey, and ²Eskişehir Osmangazi University, Faculty of Education, Department of Elementary Education, 26480 Eskişehir, Turkey.

(Received 20 October 2023; revised 19 January 2024; accepted 11 June 2024)

Abstract: The novel Schiff bases **3a-3d** were synthesized by reacting with 6methyl-2-aminobenzothiazole and different substituted benzaldehydes. Afterwards, the obtained Schiff bases were reduced with NaBH₄ to form amine compounds **4a-4d**. In the final step, reaction of the amine with chloroacetyl chloride gave the novel amide derivatives **5a-5d**. The structures of the all novel synthesized compounds were characterized by FT-IR, ¹H NMR, ¹³C NMR, ESI MS, HETCOR, 2D (¹H-¹H) COSY and elemental analyses. To investigate the antimicrobial activities of the novel synthesized compounds, they were tested against some Gram-positive and Gram-negative bacterial and fungal species and the results were discussed.

Keywords: Schiff base; benzothiazole-2-yl-amide; acylation; antibacterial activity; minimum inhibitory concentration.

INTRODUCTION

Compounds containing the azomethine group (-CH=N-) have been known as Schiff bases. Schiff bases can be prepared by the condensation reaction of a primary amine with an active carbonyl group. Schiff bases contain active azomethine groups (-CH=N-), so they are compounds that have been widely studied. In some studies, Schiff bases have been reported to exhibit various antibacterial, antifungal, herbicidal and clinical activity.¹⁻³ Heterocyclic compounds are organic compounds that contain at least one heteroatom other than carbon atoms, such as sulfur, nitrogen, oxygen and phosphorus, which are within a cyclic carbon structure, noting that these atoms are either outside or inside the ring. Heterocyclic compounds are the most important class of organic compounds as they have excellent activity in many diseases⁴⁻⁶. Among these heterocyclic compounds are Schiff bases. For this reason, many heterocyclic Schiff base

^{*} Corresponding author. E-mail: <u>hsakarya@ogu.edu.tr</u>

https://doi.org/10.2298/JSC231020059C

R

derivatives have been synthesized and reported to show similar biological activity such as fungicide, antibiotic, pesticide,^{7,8} cytotoxic,⁹ anticonvulsants,¹⁰ anticancer,¹¹ antifungal activities.¹²

Benzothiazole derivatives are bicyclic heterocycles which act as a weak base formed in the benzene ring fused with 4-and 5-positions for the thiazole rings and these exhibit wide ranges of chemical activities. Compounds with a thiazole nucleus in their structure have been widely studied because this five-membered aromatic ring containing sulfur and nitrogen atoms plays a vital role in the structure of various drugs, including the antineoplastic agents thiazofurin and dasatinib¹³.Similarly substituted *N*-benzothiazol-2-yl-amides exhibit a wide variety of biological properties such as ubiquitin ligase inhibitors,^{14a} antitumor,^{14b} anti rotavirus,^{14c} the adenosine receptor,^{14d-14e} and the nuclear hormone receptor.^{14e} In particular, some benzothiazoles substituted at the 2-position with a benzoyl amino moiety showed antibacterial, antifungal, and antitubercular activity.^{14f}

In our present work, we report on (i) the synthesis of four novel benzothiazole derivated Schiff bases in varied solvents such as ethanol, methanol, tetrahydrofuran, toluene, acetonitrile, and benzene as well as ethyl lactate. Ethyl lactate is an important monobasic ester. It is a clear to slightly yellow liquid, and it is found naturally in small quantities in a wide variety of foods, including wine, chicken, and some fruits. Traditional synthesis methods of Schiff bases have been used petroleum-derived solvents such as toluene, which are often toxic. Ethyl lactate is an environmentally benign solvent with effectiveness comparable to petroleum-based solvents. Ethyl lactate has interesting properties such as being a solvent that is non-corrosive, non-carcinogenic, non-teratogenic, biodegradable and does not harm the ozone layer. Moreover, ethyl lactate is forms a suitable solution with water for the synthesis of Schiff base. Additionally, using this green solvent provides many advantages, such as a catalyst-free protocol, short reaction times, simple operation, and processing of products without the need for chromatography. (ii) Obtaining novel amine compounds by reduction of Schiff bases, (iii) synthesis of the corresponding novel amide, (iv) spectroscopic characterization of the compounds obtained, and (v) the evaluation of their antimicrobial activity.

EXPERIMENTAL

The spectroscopic data and spectra of the novel synthesized compounds **3a-5d** are given in the supplementary materials.

General procedures

Melting point *Gallenkamp apparatus*. IR spectra: *Perkin Elmer Precisely Spectrum 100* FT-IR Spectrophotometer; in KBr; \tilde{v} in cm⁻¹. ¹H NMR, ¹³C-NMR, 2D (¹H-¹H) COSY and HETCOR spectra: *Bruker DPX FT NMR* (500 MHz) and (125 MHz) spectrometer; in TMS (DMSO-*d*₆); δ in ppm rel.to Me₄Si as the internal standard, *J* in Hz. ESI MS: (LS/MS-APCI) *AGILENT 1100* MSD spectrometer; at 100 eV; in *m/z*. Elemental analyses: *Elementary*

3

Analsensysteme GmbH varioMICRO CHNS (Turkish Technical and Scientific Research Council Laboratories, Ankara, Turkey). TLC was performed on pre-coated silica gel plates (Merck 60, F₂₅₄, 0.25 mm). Organic solvents used were at HPLC grade or were purified by the standard procedure. All reagents were of commercial quality or were purified before use.

Bacterial and yeast strains obtained from American Type Culture Collection (ATTC; Rockville, MD, USA), Northern Regional Research Laboratory (NRRL; USDA; Peoria, Illinois/USA) were employed in this work. They included gram positive bacteria (*Staphylococcus aureus* ATCC 6538, *Staphylococcus epidermidis* ATCC 12228, *Bacillus subtilis* NRRL-B 4378) and gram negative bacteria (*Escherichia coli* NRRL-B 3008, *Pseudomonas aeruginosa* NRRL-B 2679). The following 2 fungal strains were also tested: *Candida albicans* NRRL Y – 12983 and *Candida parapsilosis* NRRL Y- 12696.

Synthetic procedures

Method A for the synthesis of N-[(2-Methylphenyl) methylidene]-6-methyl-1,3-benzothiazol-2amine (3a).^{9,15}

A solution of 2-amino-6-methyl benzothiazole (1, 30 mmol) and o-methyl benzaldehyde (2a, 28.7 mmol) in ethanol (100mL) were refluxed for 2h at 75°C. The mixture was allowed to stand at room temperature for overnight and then concentrated. The residue was washed with n-hexane (2x100 mL) and filtered off then it was hydrolyzed in water and extracted with ethyl acetate (EtOAc) (4x50 mL). After drying over with anhydrous Na₂SO₄ and evaporation, crystalline product (3a, 70%) was obtained and recrystallized from dichloromethane (DCM). Compound 3d was prepared using the same method described above.

Method B for the synthesis of N-[2-methoxyphenylmethylidene]-6-methyl-1,3-benzothiazol-2-amine (3b).⁹

The solution of 2-amino-6-methyl benzothiazole (1, 5mmol), o-methoxy benzaldehyde (2b, 6 mmol) and acetic acid (1 mL) in ethanol (25 mL) were heated for 30 minutes until no starting amine remained. After waiting for a while at room temperature, a precipitate formed, filtered, washed with diethylether, and the resulting product was crystallized in dichloromethane (3b, 76%).

Modified method C for the synthesis of N-[2-hyroxyphenylmethylidene]-6-methyl-1,3-benzothiazol-2-amine (3c).¹⁶

A mixture of 2-amino-6-methyl benzothiazole (1, 5mmol) the o-hydroxy benzaldehyde (2c, 6 mmol) in ethyl lactate–water system (3 mL, 70% ethyl lactate in water (v/v)) was stirred magnetically at room temperature for four minutes. After completion of the reaction, as indicated by TLC, the reaction mixture was left overnight. The formed precipitate was isolated by filtration and washed with water to furnish pure N-[(2-hyroxyphenyl)methylidene]-6-methyl-1,3-benzothiazol-2-amine derivatives (3c) in excellent yields (90%), with no need of purification.

General procedure for the synthesis of N-(2-Methylbenzyl)-6-methyl-1,3-benzothiazol-2-amine (4a). ^{17,18}

N-[2-methylphenylmethylidene]-6-methyl-1,3-benzothiazol-2-amine (**3a**, 2.5 g, 9.3 mmol) was dissolved in methanol (75 mL). Then, NaBH₄ was added to the stirred solution at room temperature until the solution became colorless. Cold water was added to the solution to precipitate the products. The precipitates were recrystallized from methanol to obtain amine derivative (**4a**, 87%). Compounds **4b-4d** were prepared using the same method described above.

General procedure for the synthesis of 2-Chloro-N-[6-methyl-1,3-benzothiazol-2-yl]-N-[2-methylbenzyl] acetamide (5a).¹⁹

Chloracetyl chloride (0.148 mLx10, 1.86 mmol) was added to the novel amine compound (4a, 0.50g, 1.86 mmol) in dry dichloromethane (DCM, 50 mL) in the presence of triethylamine (1 mL, 7.10 mmol). The mixture was then heated to reflux for 2 hours and evaporated in vacuo. The residue was hydrolyzed in water (10 ml) and extracted with dichloromethane (5 x 10 mL). The combined organic layers were dried over anhydrous MgSO4, filtered and evaporated in vacuo. The crystalline was recrystallized from chloroform/dichloromethane to obtain (5a, 0.48g, 76%). Compounds 5b-5d were prepared using the same method as described above. *Biological activity*

The standardized agar well diffusion method was used to determine the activity of the synthesized compounds against sensitive organisms.²⁰ These organisms were Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis as Gram positive bacteria, Escherichia coli and Pseudomonas aeruginosa as Gram negative bacteria, Candida parapsilosis as fungus strains. Mueller Hinton Broth is used to determine the susceptibility of bacteria to sulphonamides by the tube dilution method. In this study, the bacterial and yeast cultures were incubated in Mueller-Hinton Broth (MHB) at 35 to 37°C until they were visibly turbid. The density of these cultures was adjusted to a turbidity equivalent to that of the 0.5 McFarland standard with sterile saline. Bacterial and yeast cell suspensions were finally diluted, respectively, to 5 x 10⁵ CFU (colony forming units)/mL and 10⁴ CFU/mL for use in the assays. Mueller Hinton Agar (MHA) for bacteria and Sabouraud Dextrose Agar (SDA) for fungi were sterilized in a flask and cooled to 45 to 50°C, distributed to the sterilized petri dishes (9 cm). The entire surfaces of the MHA plates and SDA plates were inoculated with the bacteria and fungi by spreading them with a sterile swab dipped into the adjusted suspensions. Six wells, each 6 mm in diameter, were cut out of the agar and 20 μ L of the compounds. The inoculated petri dishes were incubated at 37°C for 24 h. The results were expressed in terms of the diameter of the inhibition zone. Penicillin and chloramphenicol were used as positive controls for bacteria, fluconazole as a positive control for fungi. All assays were performed in duplicate. ^{21,22}

Minimum Inhibitory Concentration (MIC)

MIC was determined by the micro dilution method using a 96 well plate according to NCCLS²⁰ and 100 μ l of MHB was placed in each well. Then, the stock solutions of compounds were dissolved in DMSO and transferred into first well, and serial dilutions were performed so that concentrations in the range of 9,765-5000 μ g/ml were obtained. The inoculums were adjusted to contain approximately 10⁵ CFU/ml bacteria and 10⁴ CFU/ml fungi, as described previously. 100 μ l of the inoculums was added to all wells and the plates were incubated at 37°C for 24 h. MIC values were detected by adding 20 μ l of 0.5% triphenyl tetrazolium chloride (TTC) aqueous solution. The MIC value was taken as the lowest concentration of the compounds that inhibited any visible bacterial and fungi growth, as indicated by TTC staining after incubation.²⁰ Penicillin, chloramphenicol and fluconazole were used again as the reference antibiotic control.

RESULTS AND DISCUSSION

Synthesis and characterization

The title compounds **3a-5d** synthesized according to the process described in Scheme 1. The structures of all the compounds **3a-5d** were established on the basis

5

of FT-IR, ¹H NMR, ¹³C NMR, HETCOR, 2D(¹H-¹H) COSY, MS spectra and elemental analyses. In all compounds, the assignment of individual proton signals in the ¹H NMR spectra was based on J_{HH} coupling constant values and confirmed by ¹H-¹H COSY and HETCOR spectra.

Scheme I. General scheme of synthetic procedure for compounds 3a-5d

The novel Schiff bases **3a-3d** were synthesized according to the route shown in Scheme 1. Among these compounds, only compound **3c** was synthesized by an alternative method other than that shown in Scheme 1. To synthesize Schiff base **3c**, various solvents such as ethanol, methanol, tetrahydrofuran, toluene, acetonitrile, benzene and ethyl *L*-lactate were used. For this purpose, it was aimed to increase the efficiency of the Schiff base, reduce the reaction time and obtain pure product without using purification techniques (Table I). Traditional synthesis methods of Schiff bases use petroleum-derived solvents such as toluene, which are often toxic. However, ethyl lactate is a green solvent and forms a suitable solution with water for the synthesis of Schiff base. In addition, it was observed that Schiff base was formed in high yield when some catalysts, such as scandium (III) triflate,

ytterbium (III) triflate, were added to the medium with ethyl *L*-lactate solvent. For compound 3c, in addition to the synthesis method of other compounds, we synthesized the Schiff base using ethyl L-lactate as the green solvent. As a result of our experiment on the 3c compound for trial purposes, Schiff base 3c was obtained with good yield (Table I, entry 7). Additionally, the reaction was complete within four minutes at room temperature and the imine was pure enough to avoid the necessity for recrystallization or other solvent insensitive isolation or purification procedures.

		J 1	
Entry	Solvent	Time	Yield ^a (%)
1	Acetonitrile	24 h	12 ^b
2	Benzene	24 h	25 ^b
3	Ethanol	2 h	85 ^b
4	Ethyl lactate	4 min	95 ^d
5	Methanol	24 h	c^{b}
6	THF	24 h	c ^b
7	Toluen	24 h	35 ^b

TABLE I. Reaction conditions for the synthesis of compound 3c

a: Isolated yield.

b: All the reactions were carried out at reflux.

c: No reaction.

d: The reaction was carried out at room tempurature

The structures of compounds 3a-3d were established from their FTIR, ¹H NMR, ¹³C NMR, COSY and HETCOR (also labeled COSY C single bond H) spectra. The FTIR spectra of Schiff bases 3a-3d showed a strong band at 1610,1615, 1620 and 1618 cm-1, attributed to azomethine vCH=N (IR spectra of compounds **3a-5d** are given in the supplementary material). The absence of band around ~1730 and 3330 cm⁻¹ due to carbonyl stretching and NH₂ stretching of 2aminobenzothiazole and aldehyde respectively indicates the condensation of aromatic aldehyde and aromatic amines. ¹H NMR spectra also confirmed the proposed stoichiometry and structure of compounds 3a-3d (¹H NMR spectra of compounds **3a-5d** are given in the supplementary material). In the ¹H NMR spectra of compounds 3a-3d, the chemical shift of the aromatic protons was observed within the δ 6.96-8.12 ppm region of spectrum. The hydroxyl protons for compounds **3c** and **3d** showed as a broad signal within the δ 10.5-11.5 ppm. The observation of the OH proton of compound 3c at δ 11.5 ppm is due to the hydrogen bond of the imine nitrogen, whereas the resonance of the hydroxide proton of compound **3d** was observed at δ 10.5 ppm due to the absence of hydrogen bond. The imine proton in compounds **3a-3d** was observed as a singlet in the range of δ 9.02-9.45 ppm. Among the novel compounds, the imine proton is compound 3c, which resonates in the downfield at δ 9.45 ppm. This is due to the hydrogen bond

7

between the imine nitrogen of the phenyl ortho substituent hydroxide group. However, the imine proton of compound 3d was observed at δ 9.02 ppm, which was expressed as the increase of electron density around the imine due to the n - π conjugation effect of hydroxy oxygen. Singlets of benzothiazole substituent methyl protons were observed at δ 2.45, 2.46, 2.44 and 2.40 ppm for compounds **3a**, **3b**, **3c** and **3d**, respectively. Two sharp singlets were also observed at δ 2.65, 3.96 ppm for methyl protons (CH₃-Ar) and methoxy protons (Ar-OCH₃) for compound 3a and 3b, respectively. The signal for the remaining six protons appeared at 7.14-8.11 ppm, which was assigned to aromatic protons. For compound 3b, a triplet at 7.14 ppm, doublet at 7.24 ppm and another doublet at 7.83 ppm were assigned for aromatic protons H14, H12 and H4 respectively. In addition, H5, H13 and H15 protons of the aromatic rings resonate as doublet of doublet at 7.35 ppm, doublet of triplet at 7.66 ppm and doublet of doublet at 8.11 ppm, correspondingly. Similar signals were observed in the ¹ H NMR spectra of compounds 3a, 3c and 3d. (the numbering of the protons of the compound is given in Schemel). This assignment was additionally substantiated by ¹H-¹H COSY analysis (¹H-¹H COSY spectra are given in the supplementary material). In the ¹H-¹H COSY spectrum of compound **3b**, the two signals in the compound, the doublet of the doublet, are assigned as belonging to the H5 proton and the H13 proton. The H5 proton coupled first the H4 proton, then the H7 proton long-range coupling. On the other hand, the H15 proton interacts with both the H14 proton and the H13 proton, giving the signal of the doublet of the doublet. Similarly, the H13 coupled to the H14 proton, the H12 proton, and the H15 proton, giving the triplet of the doublet(FigS6). The HETCOR spectrum compound 3b clearly showed that there were no hydrogen atoms bonded to C2, C6, C8, C9, C10 and C11 as expected. The correlations between C4 and H4, C7 and H7, C5 and H5 in the benzothiazole ring and C12 and H12, C14 and H14, C15 and H15, C13 and H13 in the phenyl ring were also clearly observed in the HETCOR spectrum (Fig.S7). The ¹³C NMR spectrum of compounds 3a, 3b, 3c and 3d showed 16 signals corresponding to the 16 carbon atoms present in the molecule as shown in Scheme 1. In the ${}^{13}C$ NMR spectrum, signals belonging to the imine carbon were observed at 164, 161, 166 and 166.5 ppm for compounds 3a, 3b, 3c and 3d (Fig.S12and S14). Due to the presence of the carbon-nitrogen pi bond, the signal of the azomethine carbon was observed in the downfield region. The 13 signals observed at 117.88-150.54 ppm were also marked as belonging to aromatic carbons, for compound 3a. Similar signals were observed in the ¹³C NMR spectra of compounds **3b**, **3c** and **3d**. The ESI mass spectrum of compound 3b showed a molecular ion peak at m/z 283.1 $(C_{16}H_{14}N_2SO + H^+)$ and fragment ions at m/z 223.1 $(C_{13}H_7N_2S + H^+)$, 165.1 $(C_{12}H_7N + H^+)$ (Fig.S8).

Reduction of **3a-3d** with NaBH₄ in methanol at room temperature occurred easily to give the corresponding amine derivative **4a-4d** as the only product in good

yields 87-93% (Scheme 1). The structures of 4a-4d were clearly assigned as amine compounds by FTIR, ¹H NMR, ¹³C NMR, HETCOR, COSY, ESI MS spectra and elemental analyses. The FTIR spectral data of the amines 4a, 4b, 4c and 4d showed medium intensity absorption bands at 3412, 3430, 3409 and 3434 cm⁻¹ respectively, which were attributed to the vNH stretching vibration. This assignment was further supported by the disappearance of the absorption band that was assigned to the azomethine proton. The ¹H NMR spectra of the compounds 4a–4d revealed a fine triplet peak at δ 8.25–8.30 ppm for the –NH– group (¹H NMR spectra of compounds 3a-5d are given in the supplementary material). The signals of the methylene protons for the -CH₂-NH- group were detected in the region expected in the range of δ 4.47–4.55 ppm as a doublet. The spectra of 4c and 4d show a singlet at δ 9.75 and δ 9.30 ppm due to the hydrogen of the hydroxyl group. In the ¹H NMR spectrum of compound 4b, Methoxy and methyl protons were observed at δ 2.31 and 3.83 ppm as singlets. The four doublets at δ 7.02 and 7.25 ppm indicated the H12 and H4, H5 and H15 protons, respectively. The signals observed at δ 6.92 and 7.29 ppm as a triplet and at δ 7.46 ppm as a singlet may be assigned to protons H14, H13 and H7, respectively(Fig.S21 and S22). Aromatic protons of compounds 4a, 4c and 4d showed similar characteristics as those discussed in compound 4b. In the ¹³C NMR spectrum of 4b, carbon atoms of the phenyl and benzothiazole ring were observed at δ 111.06, 118.18, 120.62, 121.32, 126.79, 126.96, 128.46, 128.81, 130.44, 130.97, 150.83, 157.32, 166.00 ppm. The methyl, methoxy and methylene carbon atoms were observed at δ 21.22, 42.89 and 55.82 ppm, respectively (Fig.S23). Similar signals were observed in the ¹³C NMR spectra of compounds 4a, 4c and 4d. In the HETCOR spectrum of compound 4b, the signals of aromatic carbon atoms were observed at 111.06, 118.18, 120.62, 121.32, 126.79, 126.96, 128.46, 128.81, 130.44, 130.97, 150.83, 157.32, 166.00 ppm, respectively (Fig.S26 and S27). The mass spectrum of compound 4b shows a molecular ion peak at $m/z 285.0 (10.2\%) (M^++1)$.

The substituted amine compounds **4a-4d** were reacted with chloroacetyl chloride in the presence of triethylamine to provide the corresponding amides **5a**, **5b** and esters **5c**, **5d** in good yields 76-82 % (Scheme 1). The structures of compounds **5a-5d** were established from FTIR, ¹H NMR, ¹³C NMR, mass spectra and elemental analyses. The FT-IR spectra of the ester products depicted vN-C=O bands within the range of 1668-1663 cm⁻¹ and vOC=O bands at 1775-1762 cm⁻¹, which supported the assigned structures **5c** and **5d**. In the FT-IR spectra of the obtained amides **5a** and **5b**, carbonyl amide absorption bands appeared at 1698 and 1683 cm⁻¹, respectively. The ¹H NMR spectrum of compound **5b** exhibited four doublets at δ 6.92, 7.08, 7.25 and 7.63 ppm due to H12, H15, H5 and H4 protons, respectively. In addition, H13 proton and H14 proton of the phenyl ring resonated as triplet at 6.87 ppm and 7.29 ppm, correspondingly. The one singlet at 7.81 ppm was assigned for H7 proton (Fig.S42, S43 and S44). Aromatic protons of

9

compounds **5a**, **5c** and **5d** showed similar characteristics to those discussed in compound **5b**. Three sharp singlets were also observed at δ 2.40, 3.53 and 4.75 ppm for the methyl protons (CH₃-benzothiazole), the methoxy protons (Ar-OCH₃) and the methylene protons (-NCH₂-), respectively. Another singlet at δ 5.43 ppm was assigned for –N(CO)CH₂Cl group. The triplet originating from the NH protons at δ 8.22 ppm in compound **4b** was not detected in compound **5b**. In the ¹H NMR spectrum of compounds **5c** and **5d**, unlike compounds **5a** and **5d**, another singlet at δ 4.80 and 4.76 ppm was assigned to the –N(CO)CH₂Cl group. The molecular ion mass of compound **5a** was observed as m / z 345 in ESI MS. Ion peaks at m/z 309 and m/z 267 showed that firstly the chlorine atom and then the CH₂ClCOgroup were ionized from the ionic mass of the molecule (Fig.S40. The ¹³C NMR spectrum of compounds **5a**, **5b** had a signal at 168 and 167.86 (N-C=O-) as expected, leading us to predict that the product is an amide compound. The ¹³C NMR spectrum of compounds **5c** and **5d** could not be obtained despite many solvent attempts.

Antimicrobial activity studies

The antibacterial activity of the twelve novel synthesized compounds 3a-5d was tested against a range of Gram-positive and Gram-negative bacteria and two fungal species in the range of MIC values of 625-5000 µg/mL. As shown in Table II, these organisms were Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis as Gram positive bacteria, Escherichia coli and Pseudomonas aeruginosa as Gram negative bacteria, Candida parapsilosis as fungus strains. Among all compounds tested, **3b**, **3c**, **3d**, **4b** and **4c** showed activity against the bacteria at different MIC values (625-5000 µg/mL). However, compounds 3a, 4a-4b and 5a-5c were not active against the bacteria tested. According to preliminary results, among these compounds, compound 3c showed activity against gramnegative bacteria Staphylococcus aureus ATCC 6538, Pseudomonas aeuroginosa *NRRL-B 2679* with a MIC value of 625 µg/mL. Whereas, compounds **3b**, **3c**, and 3d exhibited activity against Candida parabsilosis NRRL Y- 12696 at a MIC of 1250 μ g/mL, while compound 4c showed activity against gram-negative Pseudomonas aeuroginosa NRRL-B 2679 and Candida parabsilosis NRRL Y-12696 fungus strains with MIC values ranging from 2500 to> 50000 µg/mL. Moreover, compounds 3b, 3c, 3d and 4c showed antifungal activity on Candida parapsilosis at an inhibition zone of 8 to 14 mm and MIC value (1250-2500 µg/mL), but other new compounds such as 3a, 4a, 4b and 5a- 5d were inactive. According to these results, we could see that among all the compounds, the compound with the ortho substituent hydroxy group, where only the imine group was present, was more active. For example, compound 3c was slightly more effective compared to compounds 3b and 3d. We also found that the scaffold containing the imine group retained antibacterial activity, and the presence of a hydroxy substituent group, especially at the ortho position, increased the activity.

Recent reports demonstrated the role of *C. parapsilosis* in the etiopathogenesis of otitis, arthritis, endocarditis, endophtalmitis, meningitis, wound infections, denture stomatitis, reproductive system infections in women, vaginitis, cervicitis, and salpingitis.²⁴ The reason for that different sensitivity between the fungi and bacteria can be found in different transparency of the cell wall.²⁵ Among the compounds we synthesized, only compounds **3b**, **3c**, **3d**, **4c** showed antifungal activity against Candida parapsilosis in an inhibition zone of 8 to 14 mm. This is due to the activity of the imine and amine groups and the substituted electron donating OCH₃ and OH in the phenyl ring. Therefore, the biological activity of compounds **3b**, **3c**, **3d** and **4c** depends on the substituted groups. Depending on the substituent groups in the compounds, the activity is OH > OCH₃ >CH₃. In addition, none of the new compounds synthesized were effective on other bacteria and fungi such as *Staphylococcus epidermidis*, *Escherichia coli*, *Bacillus subtilis* and *Candida albicans*.

CAN SAKARYA et al.

TABLE II. Antibacterial and antifungal activities of compound **3b-4c** as inhibition zone diameters (mm) and MIC (μ g/mL)

Microorganisms	3b	3c	3d	4b	4c	Р	С	F		
S. aureus ATCC 6538		625	-	-	-	62,5	7,8	-		
P. aeuroginosa NRRL-B 2679		625	-	-	5000<	62,5	62,5	-		
C. parabsilosis NRRL Y- 12696	1250	1250	1250	-	2500	-	-	125		
$\mathbf{P} = \text{Period} [in \mathbf{C} + \mathbf{C} = \mathbf{C} + $										

 \mathbf{P} = Peniciline G; \mathbf{C} = Chloramphenicol, \mathbf{F} = Fluconazole

For the further determination of the antibacterial spectrum of our compounds, the most promising agent **3c** was tested against to commonly used antimicrobial agent (Table III). Among all novel compounds, Compound **3c** showed the highest inhibitory activity against the Gram-negative Bacteria *S. aureus* and *P. aeruginosa* (MIC = 625 µg/mL) compared to the reference drugs (peniciline G: MIC= 62.5 µg/mL, chloramphenicol: MIC = 7.8 µg/mL, respectively. S. aureus bacteria have been reported to be the most common cause of bloodstream, skin and soft tissue, and respiratory tract infections. This pathogen is among those that cause severe infections in patients.²³ *P. aeruginosa* is frequently associated with infections of the urinary and respiratory tract in humans. *P. aeruginosa* infections are also common in patients receiving from cystic fibrosis.²⁰. Compound **3b**, **3c** and **3d** revealed the highest MIC (1250 µg/mL) against standard *candida parabsilosis*, while the reference compounds peniciline G and Chloramphenicol were inactive.

11

Microorganisms Р 3b 3c 3d 4a 4b 4c 4d 5a 5b 5c С S. aureus ATCC 10 21 24 6538 S. epidermidis 24 22 ATCC 12228 E. coli 20 26 NRRL-B 3008 P. aeuroginosa 36 32 NRRL-B 2679 B. subtilis NRRL-36 30 B 4378 C. albicans 22 NRRL Y - 12983 C. parabsilosis 14 10 10 25 8 NRRL Y- 12696

TABLE III. Microbial activity of novel synthesized compounds (3b-5c)

P = Peniciline G; C = Chloramphenicol, F = Fluconazole Inactive= inhibition < 6mm Highly active= inhibition zone > 12 mm

Moderately active= inhibition zone 9-12 mm Slightly active= inhibition zone 6-9 mm

CONCLUSION

In this study, compound 3c, one of the novel synthesized Schiff bases, was synthesized in the green solvent ethyl L-lactate medium, which is a other method. This synthesis method has many advantages over the traditional methods used, which are given as follows: the reaction was completed in four minute and resulted in a 95% yield, the product formed was not crystalline and required further purification, the solvent used as a green solvent is not hazardous to the environment, non-corrosive, non-carcinogenic, non-teratogenic, biodegradable, showing an important benefit of our method. In this work, the antimicrobial activity of the novel synthesized was researched. The results showed that some of the novel compounds tested showed significant antimicrobial activity. Microbes that have gained resistance to drug therapy are an increasing public health problem. While there are a few really effective antifungal preparations currently available for the treatment of systemic mycoses, the efficiency of existing drugs is rather limited. The present study has clearly indicated that compound 3c could be a promising new source of an antibacterial and antifungal agent. The results obtained from ethyl L-lactate synthesis method and activity studies could be contribute to the literature.

SUPPLEMENTARY MATERIAL

Additional data are available electronically at the pages of journal website: <u>https://www.shd-pub.org.rs/index.php/JSCS/article/view/12631</u>, or from the corresponding author on request.

Acknowledgements: This project has been supported by Eskişehir Osmangazi University Scientific Research Foundation. Project number: 200419032.

ИЗВОД

СИНТЕЗА НОВИХ *N*-СУПСТИТУИСАНИХ БЕНЗИЛ *N*-(1,3-БЕНЗОТИАЗОЛ-2-ИЛ)АЦЕТАМИДА И ЊИХОВА *IN VITRO* АНТИБАКТЕРИЈСКА АКТИВНОСТ

HANDAN CAN SAKARYA^{1*}, KAMURAN GÖRGÜN¹ II CANSU FILIK IŞCEN²

¹Eskişehir Osmangazi University, Faculty of Science, Department of Chemistry, 26480, Eskişehir, Turkey, ²Eskişehir Osmangazi University, Faculty of Education, Department of Elementary Education, 26480 Eskişehir, Turkey

Нове Шифове базе **3а-3д** синтетисане су у реакцији 6-метил-2-аминобензотиазола и различитим супституисаним бензалдехидима. Добијене Шифове базе су редуковане помоћу NaBH₄ да би се формирали одговарајући амини **4а-4д**. У последњем кораку, у реакција амина и хлороацетил хлорида добијени су нови деривате амида **5а-5д**. Структуре свих нових синтетизованих једињења су окарактерисане FT-IR, ¹H NMR, ¹³C NMR, ESI MS, HETCOR, 2D (¹H-¹H) COSY и елементарним анализама. Да би се истражила антимикробна активност нових синтетизованих једињења, они су тестирани против неких грампозитивних и грам-негативних бактеријских и гљивица врста и добијени резултати су даље дискутовани.

(Примљено 20. октобра 2023; ревидирано 19. јануара 2024; прихваћено 11. јуна 2024.)

REFERENCES

- H. F. Abd El-halim, M. M. Omar, G. G. Mohamed, *Spectrochim. Acta A* 78 (2011) 36 (https://doi.org/10.1016/j.saa.2010.06.003)
- T. B. S. A. Ravoof, K. A. Crouse, M. I. M. Tahir, F. N. F. How, R. Rosli, D. J. Watkins, *Transit. Met. Chem.* **35** (2010) 871 (<u>https://doi.org/10.1007/s11243-010-9406-6</u>)
- A. Aragón-Muriel, Y. Liscano, Y. Upegui, S. M. Robledo, M. T. Ramírez-Apan, D. Morales-Morales, J. Oñate-Garzón, D. Polo-Cerón, *Antibiotics* 10 (2021) 728 (https://doi.org/10.3390/antibiotics10060728)
- C. Ramalingan, S. Balasubramanian, S. Kabilan, M. Vasudevan, *Eur. J. Med. Chem.* 39 (2004) 527 (<u>https://doi.org/10.1016/j.ejmech.2004.02.005</u>)
- 5. G. T. Zitouni, S. Demirayak, A. Ozdemir, Z. A. Kaplancikli, M. T. Yildiz, *Eur. J. Med. Chem.* **39** (2004) 267 (https://doi.org/10.1016/j.ejmech.2003.11.001)
- M. A. Neelakantan, S. S. Marriappan, J. Dharmaraja, T. Jeyakumar, K. Muthukumaran, *Spectrochim. Acta A* 71 (2008) 628 (https://doi.org/10.1016/j.saa.2008.01.023)

13

- M. T. Tarafder, A. Kasbollah, N. Saravan, K. A. Crouse, A. M. Ali, O. K. Tin, J. Biochem. Mol. Biol. Biophys. 6 (2002) 85 (https://doi.org/10.1080/10258140290027207)
- I. Kucukguzel, S. G. Kucukguzel, S. Rollas, G. O. Sanis, O. Ozdemir, I. Bayrak, T. Altug, J. P. Stables, *Il Farmaco* 59 (2004) 893 (https://doi.org/10.1016/j.farmac.2004.07.005)
- P. Vicini, A. Geronikaki, M. Incerti, B. Busonera, G. Poni, C. A. Cabras, P. La Colla, Bioorg. Med. Chem. 11 (2003) 4785 (<u>https://doi.org/10.1016/S0968-0896(03)00493-</u> 0)
- R. Pignatello, A. Panico, P. Mazzone, M. R. Pinizzotto, A. Garozzo, P. M. Fumeri, Eur. J. Med. Chem 29 (1994) 781 (<u>https://doi.org/10.1016/0223-5234(94)90137-6</u>)
- S. Samadhiya, A. Halve, Orient. J. Chem. 17 (2001) 119 (https://www.orientjchem.org/vol17no1/synthetic-utility-of-schiff-bases-as-potentialherbicidal-agents/)
- G. Mustafa, M. Zia-ur-Rehman, S. H. Sumra, M. Ashfaq, W. Zafar, M. Ashfaq, J. Mol. Struct. 1262 (2022) 133044 (https://doi.org/10.1016/j.molstruc.2022.133044)
- A. Ayati, S. Emami, A. Asadipour, A. Shafiee, A. Foroumadi, *Eur. J. Med. Chem.* 97 (2015) 699 (<u>https://doi.org/10.1016/j.ejmech.2015.04.015</u>)
- a) F. Parlati, U. V. Ramesh, R. Singh, D. G. Payan, R. Lowe, G. C. Look, *PCT Int. Appl. WO* 2005037845, 2005 p b) M. Yoshida, I. Hayakawa, N. Hayashi, T. Agatsuma, Y. Oda, F. Tanzawa, S. Iwasaki, K. Koyama, H. Furukawa, S. Kurakata, Y. Sugano, *Bioorg. Med. Chem. Lett.* 15 (2005) 3328 (<u>https://doi.org/10.1016/j.bmcl.2005.05.077</u>) c) T. R. Bailey, D. C. Pevear, *PCT Int. Appl.* 2004078115, 2004 p d) A. Alanine, A. Flohr, A. K. Miller, R. D. Norcross, C. Riemer, *PCT Int. Appl.* WO 2001097786, 2001 p; e) S. Kerwin, L. H. Hurley, M. R. De Luca, B. M. Moore, *PCT Int. Appl.* WO 9748694, 1997 p; f) A. R. Brade, H. B. Khadse, A. S. Bobade, *Indian Drugs.* 35 (1998) 554
- D. Pareek, M. Chaudhary, P. K. Pareek, R. Kant, K. G. Ojha, R. Pareek, S M U Iraqi, A. Pareek, *Der Chemica Sinica* 3 (2010) 22 (<u>https://www.econ-</u> jobs.com/research/16005-Synthesis-of-some-bioactive-4-thiazolidinone-derivativesincorporating-benzothiazole-moiety.pdf)
- 16. 1 A. Dandia, A.K. Jain, A.K. Laxkar, *Tetrahedron Letters* 54 (2013) 3929 (https://doi.org/10.1016/j.tetlet.2013.05.035)
- 17. J. H. Billman, A. C. Diesing, J. Org. Chem. 22 (1957) 1068 (https://doi.org/10.1021/jo01360a019)
- G. N. Walker, M. A. Klett, J. Med. Chem. 9 (1966) 624 (https://doi.org/10.1021/jm00322a049)
- Y. Davion, G. Guillaumet, J.-M. Léger, C. Jarry, B. Lesur, J.-Y. Mérour, *Heterocycles* 63 (2004) 1093 (<u>https://doi.org/10.3987/com-04-10022</u>)
- 20. NCCLS, National Committee for Clinical Laboratory Standards (2008) 120
- F. Savaroglu, S. Ilhan and C. Filik-Iscen, J. Med. Plants Res. 5 (2011) 3286 (https://academicjournals.org/journal/JMPR/article-abstract/106893819396)
- F. Savaroglu, C. Filik Iscen, A.P. Oztopcu Vatan, S. Kabadere, S. Ilhan and R. Uyar, *Turk. J. Biol.* 35 (2011) 361 (<u>https://doi.org/10.3906/biy-0906-46</u>)
- F. R. Deleo, B. A. Diep, M. Otto, Inf. Dis. Clin. N. Amer. 23 (2009) 17 (<u>https://doi.org/10.1016/j.idc.2008.10.003</u>)
- 24. A. Pietrzak, G. Chodorowska, I. Jazienicka, P. Osemlak, B. Wawrzycki, P. Terlecki, J. Mieczkowska, J. Mosiewicz, T. Zubilewicz, F. Szubstarski, W. Krupski, J.

Accepted manuscritt