

the Serbian Clectronic Chemical Society

Journal of

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc.00(0)S1-S6 (2025)

SUPPLEMENTARY MATERIAL TO

The interaction between 4-oxothiazolidine-2-ylidene thioamides and iodine: a regioselective two-component 4-oxothiazolidine-2-ylidene thioamide to thiazolo[3,2-c]pyrimidine transformation mediated by iodine

ALEKSANDAR RAŠOVIĆ

Institute of Chemistry Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Beograd, Serbia.

SYNTHESIS, ISOLATED YIELDS, ANALYTICAL AND SPECTRAL DATA OF STARTING COMPOUNDS

General procedure for the preparation of 4-oxothiazolidine-2-ylidine thioamides 2a-c

The push-pull 2-alkylidene-4-oxothiazolidine 2a-c derivatives were prepared according to the following general protocol previously reported¹ and slightly modified with respect to the amount of K_2CO_3 , which was for this purpose used as the catalyst. To a suspension of the corresponding β -thioxonitrile **28** (0.01 mol) and freshly distilled α -mercaptoester (0.0172 mol; 72 % molar excess) 27 in 16 mL of ethanol, a catalytic amount of K₂CO₃ was added (in 4.5 mol % of the starting material) (Table 1). CAUTION: All reactions involving mercapto ester, owing to the unpleasant odor, should be carried out in a well-ventilated hood. The mixture was heated and stirred in an oil bath at 75 °C for 3-4 h when TLC indicated the accomplishment of the reaction. After that, the reaction mixture was cooled down to room temperature and the precipitated products (E)-2b and (Z)-2a were collected by filtration, washed with ethanol and recrystallized from 96 % ethanol and DMSO-water mixture (0.1 g, 7:5, v/v), respectively, to provide the final products (83–91 %). Alternatively, in the case of the preparation of (Z)-2c, the filtered solution was concentrated under reduced pressure, and the residue was chromatographed by column chromatography on silica gel (toluene/ethyl acetate, $10:0 \rightarrow 1:6$) affording the desired product (61 %). The structures of derivatives 2 were determined using the spectroscopic technique (¹H and ¹³C NMR)² and elemental analysis.

27

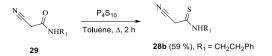
According to the general procedure, the title compound was obtained from 1.46 g (14.6 mmol) of 2-cyanoethanthioamide, 3.02 g (25.1 mmol) of ethyl 2-mercaptoacetate and a catalytic amount of K₂CO₃ (0.25 g; 1.8 mmol) in ethanol (29 mL) as yellowish solid (2.31 g, 91 %). M.P.: > 240 °C (decomposes after reaching this temperature). ¹H NMR (200 MHz, DMSO-*d*₆, δ): 3.61 (s, 2H, CH₂S), 6.16 (s, 1H, =CH), 8.44-8.65 (d, 2H, NH_{amde}), 11.51 (s, 1H, NH_{lactam}). ¹³C NMR (50.3 MHz, DMSO-*d*₆, δ): 32.9 (CH₂S), 100.6 (=CH), 158.4 (C=), 174.4 (CO_{lactam}), 193.2 (C=S). MS (CI): *m*/z 175 (M+1)⁺. Combustion analysis for C₅H₆N₂OS₂: Calculated. C 34.46, H 3.47, N 16.08; found: C 34.84, H 3.24, N 16.02.

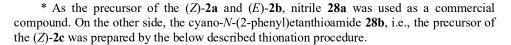
RAŠOVIĆ

K₂CO₂ cat., EtOH

2a, R¹=H, R²=H **2b**, R¹=H, R²=CH₂COOEt **2c**, R¹=CH₂CH₂Ph, R²=H

(E)-(5-Ethoxycarbonylmethyl-4-oxothiazolidin-2-ylidene)ethanthioamide (2b)

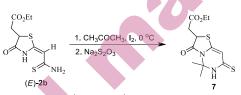

28


According to the general procedure, the title compound was obtained from 1.20 g (12.0 mmol) of 2-cyanoethanthioamide, 4.27 g (20.7 mmol) of diethyl 2-mercaptosuccinate and a catalytic amount of K₂CO₃ (0.21 g; 1.5 mmol) in ethanol (19 mL) as yellow solid (2.59 g, 83 %). M.P.: 208 °C. ¹H NMR (200 MHz, DMSO-*d*₆, ∂): 1.18 (t, 3H, J = 7.2 Hz, CH₃), 3.05-3.09 (m, 2H, CH_AH_BCOO), 4.09 (q, 2H, J = 7.2 Hz, CH₂O), 4.45-4.51 (m, 1H, CH_xS), 5.64 (s, 1H, =CH), 8.81-8.87 (d, 2H, NH_{amide}), 13.28 (s, 1H, NH_{lactam}). ¹³C NMR (50.3 MHz, DMSO-*d*₆, ∂): 14.2 (CH₃), 36.3 (CH₂COO), 41.8 (CH_xS), 61.0 (CH₂O), 97.2 (=CH), 154.9 (C=), 170.4 (CO_{ester}), 174.4 (CO_{lactam}), 191.4 (C=S). MS (CI): *m/z* 261 (M+1)⁺. Combustion analysis for C₉H₁₂N₂O₃S₂: Calculated. C 41.52, H 4.65, N 10.76; found: C 41.78, H 4.42, N 10.60.

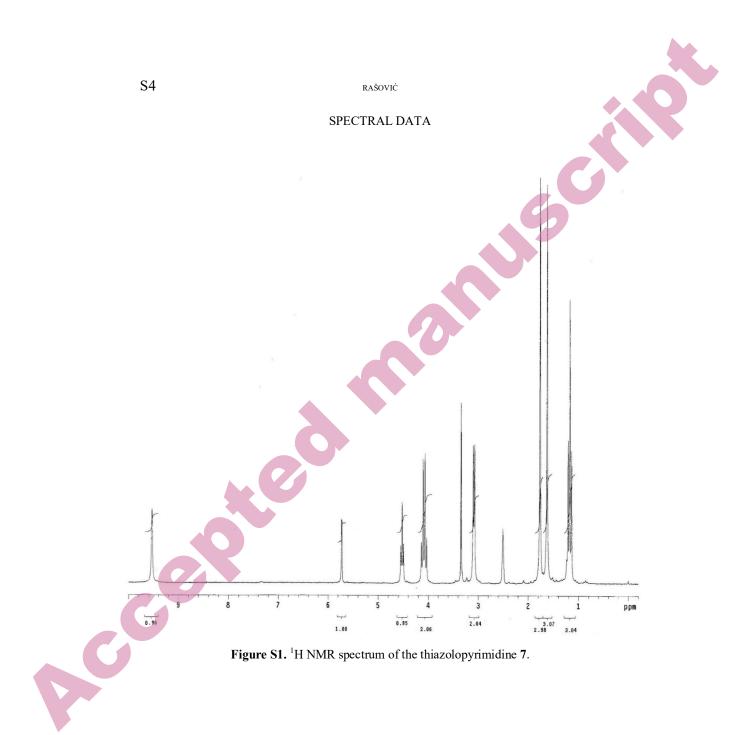
(Z)-(4-Oxothiazolidin-2-ylidene)-N-(2-phenylethyl)ethanthioamide (2c)

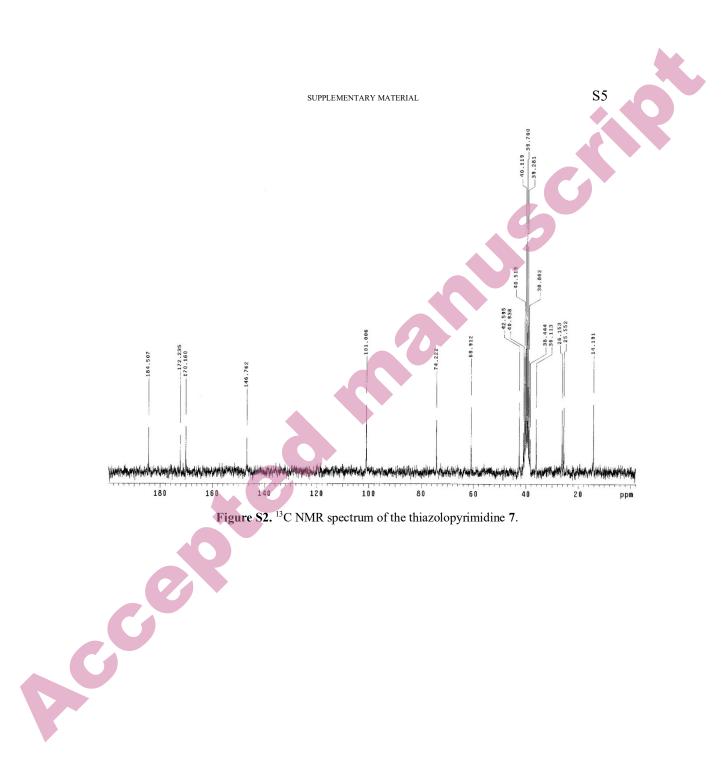
From 0.20 g (1.0 mmol) of 2-cyano-*N*-phenethylethanthioamide, 0.19 g (1.9 mmol) of ethyl 2-mercaptoacetate and a catalytic amount of K₂CO₃ (0,03 g; 0,19 mmol) in ethanol (2 mL) after column chromatography the title compound was isolated as yellowish solid (0.16 g, 61 %). M.P.: 170-172 °C. ¹H NMR (200 MHz, DMSO-*d*₆, δ): 2.86 (t, 2H, *J* = 7.0 Hz, CH₂Ph), 3.62-3.73 (m, 2H, NCH₂), the (s, 2H, CH₂S) signal is overlaped with the signal assigned to the (NCH₂) protons, 6.21 (s, 1H, =CH), 7.16-7.35 (m, 5H, Ph), 9.58 (t, 1H, *J* = 5.2 Hz, NH_{amide}), 11.51 (s, 1H, NH_{lactam}). ¹³C NMR (50.3 MHz, DMSO-*d*₆, δ): 32.9 (CH₂S), 33.8 (CH₂Ph), 45.5 (NCH₂), 101.2 (=CH), 126.4 (*p*-Ph), 128.7 (*o*-Ph), 128.8 (*m*-Ph), 139.6 (C_{ipso}-Ph), 156.1 (C=), 174.3 (CO_{lactam}), 190.4 (C=S). MS (CI): *m/z* 279 (M+1)⁺. Combustion analysis for C₁₃H₁₄N₂OS₂: Calculated. C 56.09, H 5.07, N 10.06; found: C 56.32, H 5.12, N, 9.83.

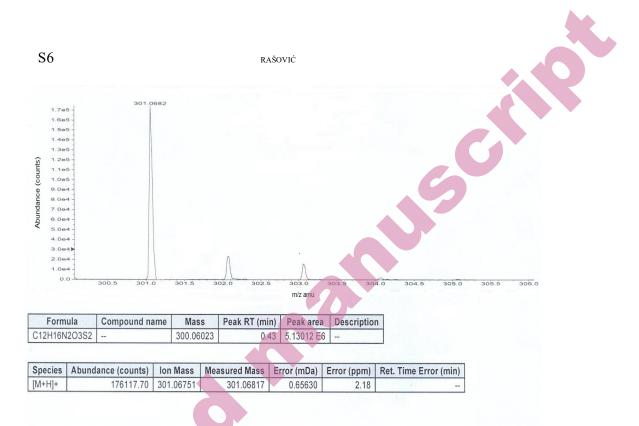
Synthesis of 2-cyano-N-phenethylethanthioamide (28b)'


S2

SUPPLEMENTARY MATERIAL


S3


A mixture of 2-cyano-*N*-phenethylethanamide **29b** (0.70 g, 3.72 mmol) and P₄S₁₀ (1.24 g, 2.80 mmol) in dry toluene (30 mL) was heated in an oil bath at 75 °C. **CAUTION**: All reactions involving phosphorous decasulfide reagent, due to the unpleasant odor, should be carried out in a well-ventilated hood. The mixture was stirred at this temperature for an additional 3 h when TLC indicated the complete consumption of 2-cyano-*N*-phenethylethanamide **29b**. After cooling to room temperature, the heterogeneous solution was filtered and concentrated under reduced pressure. The resulting residue was chromatographed by column chromatography on silica gel (toluene/ethyl acetate, $10:0 \rightarrow 7:3$) affording desired product as a yellow solid in moderate yield (0.45 g, 59 %). M.P.: 93 °C. ¹H NMR (200 MHz, DMSO-*d*₆, ∂ : 2.89 (t, 2H, J = 7.2 Hz, CH₂Ph), 3.69-3.76 (m, 2H, NCH₂), 4.03 (s, 2H, CH₂), 7.18-7.37 (m, 5H, Ph), 10.49 (s, 1H, NH_{amide}). ¹³C NMR (50.3 MHz, DMSO-*d*₆, ∂ : 32.9 (CH₂), 34.1 (CH₂Ph), 47.3 (NCH₂), 116.7 (CN), 126.6 (*p*-Ph), 128.7 (*o*-Ph), 128.8 (*m*-Ph), 138.9 (C_{ipso}-Ph), 190.3 (C=S). MS (CI): *m/z* 205 (M+1)⁺. Combustion analysis for C₁₁H₁₂N₂S: Calculated. C 64.67, H 5.92, N 13.71; found: C 64.47, H 5.90, N 13.52.



Yellow solid. M.P.: 145-147 °C. ¹H NMR ¹H NMR (200 MHz, DMSO- d_6 , δ): 1.18 (t, 3H, J = 7.0 Hz, CH₃), 1.63 (s, 3H, CH₃), 1.77 (s, 3H, CH₃), 3.08-3.10 (m, 2H, CH_AH_BCOO), 4.09 (q, 2H, J = 7.0 Hz, CH₂O), 4.50-4.55 (m, 1H, CH_xS), 5.73 (d, 1H, J = 1.0 Hz, =CH), 9.54 (s, 1H, NH_{lactam}). ¹³C NMR (50.3 MHz, DMSO- d_6 , δ): 14.2 (CH₃), 25.6 (CH₃), 26.2 (CH₃), 36.1 (CH₂COO), 42.6 (CH_xS), 60.9 (CH₂O), 74.2 (CNCH₃), 101.0 (=CH), 146.8 (C=), 170.2 (CO_{ester}), 172.2 (CO_{lactam}), 184.5 (C=S). HRMS (TOF) *m*/*z*: calcd. for C₁₂H₁₆N₂O₃S₂ [M+H]⁺: 301.06751, found: 301.06817.

Ethyl 2-(5,5-dimethyl-3-oxo-7-thioxo-3,5,6,7-tetrahydro-2H-thiazolo[3,2-c]pyrimidin-2-yl)acetate 7

Figure S3. HRMS (TOF) of the thiazolopyrimidine 7.

REFERENCES

R. Marković, M. Baranac, Z. Džambaski, M. Stojanović, P. J. Steel, *Tetrahedron* 59 (2003) 7803 (https://doi.org/10.1016/S0040-4020(03)01146-3)
A. Rašović, V. Blagojević, M Baranac-Stojanović, E. Kleinpeter, R. Marković, D. M.

Minić, New J. Chem. 40 (2016) 6364 (https://doi.org/10.1039/C6NJ00901H).