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Abstract: Acrylic acid derivatives are extensively utilized as initial monomers in 

dental materials. Nevertheless, these substances exhibit cytotoxicity towards 

different cell types, a phenomenon that must be reduced in future materials. The 

primary objective of this research is to establish a QSAR model for the prediction 

of cytotoxic effects and to identify molecular fragments and descriptors with 

mechanistic interpretations that play a role in cytotoxic effects. The Monte Carlo 

optimization technique was employed QSAR models that are not reliant on 

conformation. These models utilized both molecular graph-based and SMILES-

based descriptors. By employing a variety of statistical methodologies, an 

assessment of the predictive capabilities and resilience of the established QSAR 

models was achieved. The demonstrated numerical values used for their 

validation underscore the strong suitability of these QSAR models. The Monte 

Carlo optimization technique effectively identified molecular fragments 

represented in QSAR modeling through the use of SMILES notation, elucidating 

their impact on cytotoxicity, both positively and negatively. Given that the 

majority of molecular databases adhere to this molecular structure conformation, 

the featured QSAR models can serve as a rapid and precise screening tool for 

novel dental monomers. 

Keywords: QSAR; cytotoxicity; dental material; composite resin; SMILES; Monte 

Carlo optimization. 

INTRODUCTION 

Numerous dental procedures necessitate the utilization of polymers, which are 

composed of methacrylate-based monomers, including monomethacrylates or 

dimethacrylates.1,2 Some of the most frequently employed monomers in this 

context include urethane dimethacrylate (UDMA), triethylene glycol 
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dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA), bisphenol-A 

glycidil dimethacrylate (Bis-GMA), as well as other more recent functionalized 

monomers.1-3 The biocompatibility of these materials holds significant relevance 

for clinical applications, considering that oral tissues come into direct contact with 

them.4 In dental practice, direct restorations involving dental adhesives and resin 

composites involve interaction with sensitive dentin-pulp complexes and acrylic 

acid-based monomers. This interaction can result in the diffusion of monomers 

from the restorative material through dentinal tubules, potentially causing adverse 

effects on pulp cells and compromising tooth vitality.5,6 Literary sources indicate 

certain biological effects, such as the mutagenicity of various monomers and the 

genotoxicity and estrogenicity of Bis-GMA.7 The primary mechanism underlying 

the free-radical polymerization reaction in dental materials is associated with 

methacrylate-based monomers. This chemical process may be linked to incomplete 

monomer conversion, resulting in the presence of unreacted monomers.8 Given 

that these unreacted monomers have the potential to leach into nearby aqueous 

environments and enter the body, they may pose risks of toxicity.9 Incomplete 

polymerization not only has the potential to result in the removal of monomers 

from the formed polymer but can also contribute to the natural degradation of the 

matrix. The degradation of the resin phase in composites within the oral 

environment may take place through processes like hydrolysis and aging, which 

can lead to the release of monomers as a result of the breakdown of the organic 

matrix.9,10 Resin composite biodegradation may be linked to allergic reactions, 

bone loss, or irritation of the oral mucosa.12 The physicochemical characteristics 

of dental materials, particularly concerning the molecular size of monomers, their 

chemical compositions, and the presence of various functional groups, are the 

primary factors contributing to biodegradation and the subsequent leaching of 

materials.13,14 In the realm of dental materials research, biocompatibility 

investigations tied to quality control hold immense significance. To achieve this 

goal, cytotoxicity testing, which assesses cellular responses and the potential for 

cell death in response to new material formulations, plays a vital role in the 

development of novel dental materials. Minimizing and preventing cytotoxic 

effects are paramount, particularly in specialized fields such as endodontics and 

operative dentistry.15 

One of the primary challenges with studies on cytotoxic effects is that they 

require a substantial amount of labor and time.16 To streamline and enhance the 

screening of novel molecules in the development of materials, a practical solution 

is the adoption of in silico-based modeling approaches, such as quantitative 

structure-activity relationships (QSAR).17 In contemporary QSAR studies, models 

are constructed by utilizing a variety of molecular descriptors derived from a 

specific molecule's structure. These descriptors have their own advantages and 

limitations. Subsequently, they are transformed into a mathematical equation that 
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correlates the biological activities of the examined molecules with their chemical 

attributes (molecular descriptors).18,19 The development of a QSAR model 

necessitates not only a strong predictive capacity, robustness, and goodness of fit 

but also a well-defined domain of applicability. Additionally, QSAR modeling is 

subject to regulation by the Organization for Economic Co-Operation and 

Development (OECD), which has established several criteria that must be met for 

a QSAR model to be deemed valid. One of the key criteria involves the mechanistic 

interpretation of molecular descriptors, which pertains to the utilization of 

descriptors linked to molecular structure and relevant molecular fragments. 

In recent years, a Monte Carlo optimization method, where the analyzed 

activity is regarded as a random event, has gained prominence as a promising 

approach in QSAR modeling. This approach relies on a conformation-independent 

methodology and employs optimal descriptors derived from topological molecular 

characteristics, as well as molecules represented in the Simplified Molecular Input 

Line Entry System (SMILES) notation.20,21 The described method offers a 

significant advantage over more commonly used approaches due to its simplicity 

and efficiency. Additionally, this method can identify molecular fragments 

(calculated as SMILES notation descriptors) that influence the studied activity and 

can be linked to the chemical structures of the compounds under investigation The 

primary objective of this research is to create a conformation-independent QSAR 

model utilizing the Monte Carlo optimization method for predicting the cytotoxic 

effects of acrylic acid-based monomers. Furthermore, another key goal of this 

research was to identify SMILES notation descriptors linked to molecular 

fragments that exert both positive and negative impacts on cytotoxic effects. 

EXPERIMENTAL 

To initiate the development of suitable QSAR models, a total of 39 acrylic acid-based 

dental monomers were initially drawn using ACD/ChemSketch software version 11.0. These 

molecules were subsequently transformed into SMILES notation using the same software.22 The 

chemical structures of the compounds utilized for QSAR modeling, along with their 

corresponding SMILES notations, can be found in Table S1 (Supporting material). In this 

QSAR modeling, the pertinent cytotoxic effect activity was assessed using pIC50 values against 

Hela S3 cell lines, data from the literature were converted to pIC50 values, calculated as pIC50 = 

-logIC50. Once we completed the construction of the relevant database, we proceeded to perform 

three distinct random divisions of the main molecule database into two sets: the training set, 

comprising 29 compounds (75%), and the test set, comprising 10 compounds (25%). We also 

assessed the normality of the activity distribution, following the method outlined in the 

published literature.23 

To create conformation-independent QSAR models, we utilized the CORAL software 

(CORrelation and Logic, http://www.insilico.eu/coral), which is founded on the Monte Carlo 

method and its algorithm, considering the relevant activity as a random occurrence. We 

considered two categories of molecular descriptors derived from the molecular graph and 

SMILES notation. Concerning molecular graphs, we defined invariants as local graph 

invariants, including the Morgan extended connectivity index of increasing order (EC0), path 
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numbers of lengths 2 and 3 (p2, p3), valence shells of ranges 2 and 3 (s2, s3), and the Code of 

Nearest Neighbors (NNCk). In recent years, the Simplified Molecular Input-Line Entry System 

(SMILES) notation has gained prominence as one of the most convenient representations, 

particularly in the field of chemoinformatics. SMILES notation is regarded as an appealing 

alternative to the traditional molecular graph representation. This characteristic is of great 

significance in medicinal chemistry because establishing correlations between molecular 

fragments and molecular graph-based descriptors can be quite complex.  

The local SMILES attribute, entitled the “SMILES atom”, is a SMILES string fragment 

with one ('C', 'N', '=') or two ('Cl', 'Br', '@@') symbols which cannot be decomposed further for 

conducting individual analyses. The calculation of DCW, one of the simplest local molecular 

descriptors, is performed with a mathematical function of the mentioned SMILES atoms. In 

essence, the approach translates every character found in the SMILES string into a numerical 

descriptor. To cite an example, the propionic acid molecule represented by the SMILES notation 

as "CCC(=O)O" can be considered. In this specific case, the calculation of the DCW could be 

performed on the basis of the individual CW characters, as cited in Eq. 1: 

 DCW("CCC(=O)O" = CW("C") + CW("C") + + CW("C") + CW("(")  

+ CW("=") + CW("O") + CW(")") + CW("O") (1) 

While valuable information is obtained from single atom-based local SMILES descriptors, 

in order to reveal more complex local chemical environments, one needs to go beyond 

individual atoms. Molecular fragments which significantly contribute to the overall molecular 

properties may be defined by combining two or three consecutive SMILES atoms. DCWs can 

then be calculated by using such fragments, further enhancing the information content available 

for QSAR modeling. For instance, propionic acid represented by the SMILES notation as 

"CCC(=O)O" could be considered. Through the combination of consecutive SMILES atoms, 

the following molecular fragments can be defined, as presented in Eq. 2: 

 DCW("CCC(=O)O") = CW("CC") + CW("CC") + CW("C(") + CW("(=") +

 CW("=O") + CW("O)") + CW(")O") (2) 

When consecutive SMILES atoms are combined in order to define molecular fragments, 

there are significant advantages, although it is crucial to make certain considerations. For 

example, fragments such as "CO" and "OC" (or "CCO" and "OCC") are to be treated as distinct 

entities, which might lead to unreliable QSAR models and inaccurate representations. A 

normalized combination of SMILES atoms is applied in order to address this particular issue. 

The utilization of this approach ensures that the fragments are identified and consistently 

encoded irrespective of the order in which the atoms occur. In order to achieve this, specific 

algorithms need to be used, or it could be achieved by administering the SMILES notation 

canonization, which defines a unique order on the basis of the atomic symbols.20,21 Global 

SMILES attribute based descriptors encompass broader characteristics of the whole molecule, 

such as whether specific functional groups or atom combinations are present or absent.20,21 The 

information available for QSAR modeling can significantly be enriched through the 

incorporation of both local and global SMILES-based descriptors. What is more, SMILES 

notation-based molecular descriptors present a mechanistic interpretation, considering that this 

particular feature is in correlation with molecular fragments.20,21  The numerical value of every 

SMILES notation descriptor that a molecule has contributes to the correlation weight of the said 

molecule (DCW), which is defined as the sum of all the defined correlation weights (CW) of 

SMILES descriptors, in accordance with Eq. 3: 
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 DCW(T,Nepoch) = zCW(ATOMPAIR) +xCW(NOSP) + yCW(BOND) + 

tCW(HALO) + rCW(HARD) +  αΣCW(Sk) + βΣCW(SSk) + γΣCW(SSSk) (3) 

where z, x, y, t, α, β, and γ are numbers 1 (yes) or 0 (no), while their values determine 

whether the specific SMILES descriptor is used in the development of the model. Symbol Sk 

represents one SMILES notation symbol (or two that are inseparable), and is related to the local 

descriptors. These local descriptors also represent linear combinations of two or three SMILES 

atoms, represented by symbols SSk and SSSk, respectively. This study includes the following 

global SMILES notation-based descriptors: HALO, ATOMPAIR, BOND, HARD and NOSP, 

all defined in accordance with the published methodology.20,21  The molecules’ DCW was 

calculated by using Eq. 4 below because the QSAR model development in this study was 

performed by combining both the SMILES notation (global and local) and the local graph 

invariant descriptors, considering that this hybrid molecular descriptor approach ensures the 

development of more accurate and robust QSAR models than the ones based on a single type 

of descriptor: 

 DCW(T,Nepoch) = ΣCW(Sk) + ΣCW(SSk) + ΣCW(SSSk) + ΣCW(EC0k) + 

ΣCW(PT2k) + ΣCW(PT3k) + ΣCW(VS2k) + ΣCW(VS3k) + ΣCW(NNCk) (4) 

In addition to the aforementioned symbols: Sk, SSk, and SSSk, Equation 2 uses the 

following symbols as well: the Morgan connectivity index of the zero order (with the hydrogen 

suppressed graph) – EC0k, paths in the lengths of 2 and 3 – PT2k and PT3k; valence shells 2 

and 3 – VS2k and VS3k; Nearest Neighbors – NNCk. The calculation of all the above-defined 

molecular descriptors was made with the CORAL software (CORrelation and Logic) 

(http://www.insilico.eu/coral). In this study, we employed all SMILES notation-based 

descriptors, encompassing local, global, and HARD-index descriptors. A notable characteristic 

of the resulting QSAR model, developed using the Monte Carlo method, is the calculation of 

correlation weight (CW), which assigns a numerical value to each of the optimal descriptors 

utilized.21 The methodology for accomplishing this process involves the generation of 

appropriate random numbers and assessing the fraction of numbers that conform to certain 

properties. In this process, CW values are randomly allocated to all employed optimal 

descriptors, encompassing both molecular graph-based and SMILES notation-based 

descriptors, in each individual Monte Carlo run. The Monte Carlo optimization procedure is 

then extended to compute the numerical data for the correlation weights, which aim to maximize 

the correlation coefficient between the studied activity and the employed optimal descriptors. 

In this context, the Monte Carlo method relies on two parameters: threshold (T) and the number 

of epochs (Nepoch).  

In the creation of QSAR models, we explored values ranging from 0 to 10 for T and from 

0 to 70 for Nepoch. The process of identifying the most predictive combination of T and Nepoch 

was determined based on a methodology outlined in published references.24-26 The primary 

objective of any QSAR modeling process is to create a robust model that can predict the 

properties of new molecules with objectivity, reliability, and precision. To assess the quality of 

the developed QSAR models, we employed the following methods: internal validation using 

the training set, external validation using the validation set, and data randomization through a 

Y-scrambling test. We accomplished this by employing various statistical parameters, including 

the correlation coefficient (r2), cross-validated correlation coefficient (q2), standard error of 

estimation (s), mean absolute error (MAE), Fischer ratio (F), root-mean-square error (RMSE), 

Rm
2, and MAE-based metrics.23,27-31 Recently, a novel criterion known as the Index of Ideality 

of Correlation (IIC) has been proposed for evaluating the predictive capacity of QSAR 
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models.25,26 This criterion takes into account not only the correlation coefficient but also the 

distribution of data points relative to the diagonal line, in the coordinates of observed and 

calculated values for the studied endpoint. The set of correlation weights: CW(x) are 

coefficients producing a maximal value of the target function within the Monte Carlo 

optimization procedure and the target function can be defined as: 

 𝑇𝐹 = 𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 + 𝑅𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 − |𝑅𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 − 𝑅𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒−𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔| × 𝐶𝑜𝑛𝑠 (5) 

where Rtraining is the correlation coefficient between endpoint and the DCW (T*, N*) for 

compounds in the training set, the Rinvisible-training corresponds to the same parameter in the 

invisible training set; Praxis has shown that Const = 0.1 is a more or less satisfactory choice for 

manifold computational experiments with different endpoints. However, while keeping the 

value of Const invariant, the target function can be modified as: 

 𝑇𝐹𝑚 = 𝑇𝐹 + 𝐼𝐼𝐶 × 𝐶𝑜𝑛𝑠𝑡 (6) 

with the IIC parameter calculated as the following form: 

 𝐼𝐼𝐶𝑡𝑒𝑠𝑡 = 𝑟𝑡𝑒𝑠𝑡 ×
𝑚𝑖𝑛( 𝑀𝐴𝐸−

𝑡𝑒𝑠𝑡, 𝑀𝐴𝐸+
𝑡𝑒𝑠𝑡)

𝑚𝑎𝑥( 𝑀𝐴𝐸−
𝑡𝑒𝑠𝑡, 𝑀𝐴𝐸+

𝑡𝑒𝑠𝑡)
 (7) 

where, using the differences: 

 ∆𝑘= 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑘 − 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑘 (8) 

With data available for all Δk values in the test set, it is possible to compute the sum of 

negative and positive Δk values, akin to the calculation of mean absolute error (MAE): 

 𝑀𝐴𝐸𝑡𝑒𝑠𝑡 =
1

𝑁− ∑ |∆𝑘|     ∆𝑘< 0, 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓∆𝑘< 0 −𝑁−

𝑘=1
−  (9) 

  𝑀𝐴𝐸𝑡𝑒𝑠𝑡 =
1

𝑁+ ∑ |∆𝑘|     ∆𝑘≥ 0, 𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓∆𝑘≥ 0 +𝑁+

𝑘=1
+    (10) 

RESULTS AND DISCUSSION 

The concept of the applicability domain (AD) plays a pivotal role in guiding 

the selection of molecules.32-34 To establish the AD, we followed a published 

methodology and confirmed that all molecules in this study fell within the defined 

AD range, with no outliers identified.21 Utilizing the Least Squares method, we 

present the most optimal QSAR models for the studied activity, with respect to the 

T and Nepoch values, in the form of Equations 11-13. 

 Split 1: pIC50 = -0.3378(±0.0938) + 0.0194(±0.0005)×DCW(4,9) (11) 

 Split 2: pIC50 = 0.2293(±0.0350) + 0.0411(± 0.0005)×DCW(1,6) (12) 

 Split 3: pIC50 = 0.3749(±0.0353) + 0.0326(± 0.0005)×DCW(1,18) (13) 

The values of the statistical metrics used to assess the quality of the developed 

QSAR models for predicting the cytotoxicity of acrylic acid-based dental 

monomers are presented in Table S1 (Supplementary material). These metrics 

suggest that the method employed was successful in creating a QSAR model with 

good reproducibility, which was further validated using the concordance 

correlation coefficient. The predictability of the developed QSAR model was 

assessed based on the values presented in Table S2, confirming the model's 

validity. Additionally, the model was classified as valid using MAE-based metrics. 
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We conducted the ultimate evaluation of the developed QSAR models, both for 

the training and the test set, using the Index of Ideality of Correlation and obtained 

values that indicate the high predictive potential of the developed QSAR models. 

Furthermore, we conducted Y-randomization, involving the random shuffling of 

Y values in 1000 trials across ten separate runs, to gauge the robustness of the 

developed QSAR models.23 The values shown in Table S3 (Supplementary 

material) suggest that there was no chance correlation among the developed 

models. Among the statistical methods used, the most favorable QSAR model was 

derived from the first split. Notably, the best model was achieved with a T value 

of 4, and the most suitable Nepoch value was determined to be 9. The most 

successful Monte Carlo optimization runs (with the highest r2 values) for the 

developed QSAR models from all splits are visually depicted in Figures 1-3. 

 
Figure 1. Graphical presentation of the best Monte Carlo optimization run (the highest value 

for r2) for the developed QSAR model for split 1. (Ac(expr.) – experimental value for 

molecule pIC50; Ac(calc.) – calculated value for molecule pIC50 using developed QSAR 

model; Diff. – Ac(expr.) - Ac(calc.)) 

 
Figure 2. Graphical presentation of the best Monte Carlo optimization run (the highest value 

for r2) for the developed QSAR model for split 2. (Ac(expr.) – experimental value for 

molecule pIC50; Ac(calc.) – calculated value for molecule pIC50 using developed QSAR 

model; Diff. – Ac(expr.) - Ac(calc.)) 
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Figure 3. Graphical presentation of the best Monte Carlo optimization run (the highest value 

for r2) for the developed QSAR model for split 3. (Ac(expr.) – experimental value for 

molecule pIC50; Ac(calc.) – calculated value for molecule pIC50 using developed QSAR 

model; Diff. – Ac(expr.) - Ac(calc.)) 

One of the primary objectives of this study was to identify molecular 

fragments, characterized as the SMILES notation's optimal descriptors, that exert 

both positive and negative effects on the studied activity.21,35-37 The complete list 

of molecular descriptors, which are derived from both the SMILES notation and 

the molecular graph, can be found in Table S4 in the Supplementary Material. An 

illustration of the calculation of a molecule's summarized correlation weight 

(DCW) and the studied activity (pIC50) is provided in Table 1. In this example, 

molecular graph-based descriptors were excluded to facilitate a more 

straightforward interpretation. 

Table 1. Example of DCW calculation 

 

IUPAC name: 

[2-hydroxy-3-(2-methylprop-2-enoyloxy)propyl] 2-

methylprop-2-enoate 

SMILES notation: 

OC(COC(=O)C(=C)C)COC(=O)C(=C)C 

DCW = 57.88841 

pIC50(calc.) = 2.6094 

SAk CW(SAk) SAk CW(SAk) SAk CW(SAk) SAk CW(SAk) 

1000100000 2.0407 BOND10000 1.411 Cmax.0...... 0.0745 O...=....... -0.9669 

(........... 2.3831 C...(....... -0.8598 HALO00000 3.1001 O...C...(... 1.0934 

(...C...(... -0.5923 C...(...=... -0.916 Nmax.0...... 1.8318 O...C....... -0.922 

++O---B2= 2.9389 C...(...C... 1.4187 NOSP01000 1.9941 Omax.5...... 0 

=...(....... -0.7396 C........... -0.8583 O...(....... -0.6732 Smax.0...... 2.3577 

=........... -0.0911 C...=...(... -0.9573 O...(...C... 2.1158 O...=...(... -0.5599 

=...C...(... 2.1233 C...=....... 4.2232 O........... -0.5305   

=...O...(... -0.4744 C...O...C... -0.6593     
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Following the published methodology, we categorized the obtained SAKs as 

promoters of the cytotoxicity of acrylic acid-based dental monomers.21,35-37  In 

Table 2, we have listed selected SAKs along with their mechanistic interpretations, 

while the complete list can be found in Table S2 in the Supporting Information. 

We have provided an analysis of the contribution of molecular fragments to the 

cytotoxicity of acrylic acid-based dental monomers in Figure 4. In the presented 

figure, green denotes groups that have a positive influence, while red denotes 

groups that have a negative influence on the studied effect. As mentioned, each 

SAK contributes its CW value. 

Table 2. Mechanistic interpretation of selected SAKs 

Promoters of pIC50 increase  Promoters of pIC50 decrease 

(...(....... 

(........... 

Simple molecular branching 

and complex  

(...O...(... 
Complex molecular branching 

with oxygen atom involving 

++++N---

B2== 

Presence of independent nitrogen 

atom and double bond in molecule 

C...(....... 

(...C...(... 

molecular branching on 

carbon atom 

++++N---

O=== 

Presence of independent nitrogen 

and oxygen atoms in molecule 

=........... Double bond 

++++O---

B2== 

Presence of independent 

oxygen atom and double 

bond in molecule 

=...(....... 
Double bond involved in 

molecular branching 

1........... Presence of ring in molecule =...O...(... 
Double bond with oxygen atom 

involved in molecular branching 

C...1....... 

C...1...C... 

Presence of ring in molecule 

with carbon atoms 
C...(...=... 

Double bond with carbon atom 

involved in molecular branching 

N...C...C... Ethyl amine fragment C........... Carbon atom 

C...=....... 

C...=...C... 

Double bond with carbon 

atom 

N........... Nitrogen atom 

O........... Oxygen atom 

C...N...C... 
Sequence of carbon-

nitrogen-carbon atoms 
N...C....... 

Methyl amine group, or sequence 

of nitrogen-carbon atom 

c........... 

c...c....... 

Aromatic carbon in 

molecular structure  
c...(...C... 

Branched carbon atom bounded to 

aromatic carbon 

c...C....... 

c...O....... 

Carbon or oxygen atom 

bounded to aromatic carbon 
c...O...C... 

Methyl group bounded to aromatic 

carbon 
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Figure 4. Molecular fragments contribution to the cytotoxicity of acrylic acid-based dental 

monomers (green – increase, red – decrease). 

Based on the results obtained from QSAR modeling, the SMILES notation 

descriptors associated with molecular fragments that have a positive impact on 

pIC50 for the cytotoxicity of acrylic acid-based dental monomers, leading to a 

decrease in cytotoxicity, include: "C...C..." (ethyl group) - Representing two 

carbon atoms in sequence in any part of the molecule; "O...C..." (methoxy group) 

- Denoting a sequence of oxygen and carbon atoms in any part of the molecule; 

"O...C...C" (ethoxy group) - Representing oxygen and two carbon atoms in 

sequence in any part of the molecule. 

In more complex molecular groups, some fragments contribute to an increase 

in the pIC50 value, while others contribute to a decrease. Therefore, to fully 

understand how these complex molecular fragments influence the cytotoxicity 

effect, it is essential not only to perform a qualitative analysis of individual 

molecular fragments but also a quantitative analysis of their CW numerical values. 

For instance, a molecular fragment found in Figure 2 that incorporates a carboxyl 

group contains specific subfragments that either exert a detrimental influence on 

pIC50, such as "C............" representing a solitary carbon atom or a methyl group, 

"O............" signifying an individual oxygen atom, "=..........." indicating the 

presence of a double bond, "=...(......." denoting a double bond integrated into 

molecular branching, and "C a double bond with a carbon atom involved in 

molecular branching." In contrast, within the same carboxyl group, there are 

subfragments with a beneficial effect on pIC50, including "(...(......." and "(..........."-

both linked to molecular branching, "C...(......." and "(...C...(..."-related to 

branching on carbon atoms, and "C...=......" and "C...=...C..."-subfragments 
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associated with double bonds featuring carbon atoms. This illustrates how intricate 

molecular structures can encompass various subfragments that contribute both 

positively and negatively to the observed cytotoxicity effect, underscoring the 

necessity for a comprehensive qualitative and quantitative analysis. 

CONCLUSION 

The primary objective of this research is to create robust QSAR models 

capable of predicting the cytotoxicity of acrylic acid-based dental monomers with 

high predictability. This predictability is assessed through the use of various 

statistical parameters. The conformation-independent models, developed based on 

optimal descriptors derived from both local graph and SMILES notation invariants, 

are calculated using the Monte Carlo optimization method. The application of a 

variety of statistical techniques allowed for the assessment of the predictive 

potential and robustness of the developed QSAR models. The validity of these 

models is confirmed by the numerical values obtained during their validation. The 

Monte Carlo optimization method effectively identified molecular fragments, 

which are employed as SMILES notation fragments in QSAR modeling, with both 

positive and negative effects on the cytotoxicity of acrylic acid-based dental 

monomers. In conclusion, the methodology presented in this research can be 

employed to pursue the development of new dental materials with reduced 

cytotoxicity. 
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И З В О Д 
 

QSAR МОДЕЛОВАЊЕ ЦИТОТОКСИЧНОСТИ ДЕНТАЛНИХ МОНОМЕРА БАЗИРАНИХ 
НА ДЕРИВАТИМА АКРИЛНЕ КИСЕЛИНЕ ПРИМЕНОМ МОНТЕ КАРЛО 

ОПТИМИЗАЦИЈЕ 

МИРЈАНА БОШКОВИЋ1, САША СТАНКОВИЋ1, ЈЕЛЕНА В. ЖИВКОВИЋ2, АЛЕКСАНДАР М. ВЕСЕЛИНОВИЋ2* 

1Унивезитет у Нишу, Медицински факултет, Катедра Стоматолошка протетика, Булевар  Др 

Зорана Ђинђића 81, Ниш, Србија,2Унивезитет у Нишу, Медицински факултет, Катедра Хемија, 

Булевар  Др Зорана Ђинђића 81, Ниш, Србија 

Полимери који се примењују у стоматолошкој пракси често су формирани помоћу 
деривата акрилне киселине као почетног мономера. Међутим, наведени деривати показују 
цитотоксичност према различитим типовима ћелија, што је ефекат који мора бити смањен 
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у будућим материјалима. Основни циљ овог истраживања је да се успостави QSAR модел за 
предвиђање цитотоксичних ефеката деривата акрилне киселине као и да идентификује 
молекулске фрагменте, молекулске дескрипторе са механичким тумачењем, који имају 
утицај на цитотоксичност. Основни алгоритам за добијање QSAR модела био је Монте Карло 
техника оптимизације, а модели су користили конформационо независне молекулске 
дескрипторе засноване на молекуларном графу и на SMILES нотацији. Различити 
статистички параметри су коришћени да би се валидирали добијени QSAR модели и 
добијени резултати указују на добру предиктивност QSAR модела. С обзиром да већина база 
података молекула користи SMILES нотацију за представљање молекулске структуре, 
представљени QSAR модели могу послужити као брз и ефикасан алат за претрагу нових 
мономера. 

(Примљено 1. марта; ревидирано 15. априла; прихваћено 2. јуна 2024.) 
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