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Abstract: In this study, 51 coumarin-1,2,3-triazole hybrids with known minimum
inhibitory concentration (MIC) values against Staphylococcus aureus were used
for the generation of a Monte Carlo based optimized QSAR model on
CORrelations And Logic (CORAL) software. The entire dataset was divided into
four different sets, namely the training set (Tr), the invisible training set (iTr),
the calibration set (C), and the validation set (V) of three random splits. For each
split, five models were generated using various combinations of SMILES,
graphs, and hybrid optimal descriptors with various connectivity indices.
Finally, fifteen models were obtained from three random, non-identical splits.
For the best model from each split, the correlation coefficient (r?) ranged from
0.9672 to 0.8693, while the cross-validated correlation coefficient (Q?) ranged
from 0.9478 to 0.8250. The mean absolute error (MAE) for the best models was
less than 0.065. Additionally, favorable values of the index of ideality of
correlation (11C) and correlation intensity index (CII) were reported, justifying
the robustness, reliability, and predictive potential of the developed models.
Further, good and bad fingerprints were estimated based on correlation weights
for structural attributes.

Keywords: CORAL software; antibacterial; structural attributes; index of ideality
of correlation; correlation intensity index.

INTRODUCTION

Natural products have played a crucial role in the discovery of drugs for almost
all types of diseases.! The natural products as such and their semisynthetic analogs
contribute more than half of the approved drugs of today.?® Because of safety and
compatibility, natural products are and will be at the center of the drug discovery
process.* Traditional drug discovery methods often rely on trial-and-error
approaches, which are time-consuming and resource-intensive.> However, due to
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dependence on several factors, it is not possible to estimate exactly, but on average,
the development of a single drug from a new chemical entity may cost up to $1
billion over twelve to fifteen years.>® While natural products continue to-inspire
drug discovery efforts, there is a growing recognition of the need for innovative
approaches that integrate advances in computational biology, synthetic chemistry,
and biotechnology to overcome the limitations of traditional drug discovery.”® By
leveraging interdisciplinary approaches and cutting-edge technologies, researchers
can harness the potential of natural resources more effectively and develop novel
therapeutics with improved efficacy, safety, and sustainability.® Computer-aided
drug design (CADD) has emerged as a powerful tool in the field of pharmaceutical
research that utilizes computational methods to facilitate the discovery and
development of new drugs.’® The CADD approach integrates principles from
various disciplines, such as chemistry, biology, and computer science, to expedite
the drug discovery process.'*'? CADD-based rational drug design approaches, viz.,
virtual screening by docking simulations, quantitative structure-activity
relationship (QSAR) studies for lead optimization and prediction of bioactivities,
and in silico prediction of physiochemical characteristics of molecules in terms of
absorption, distribution, metabolism, and toxicity, help the researchers prioritize
the most promising candidates for further experimental validation, significantly
reducing the time and cost associated with traditional screening methods.
QSAR studies play a pivotal role in drug discovery and development by
enabling the rational design, optimization, and selection of potential drug
candidates. QSAR models provide valuable insights into the relationship between
the chemical structure of compounds and their biological activities.’* QSAR
modeling utilizes computational techniques to analyze the structural features of
molecules and predict their pharmacological properties, thus facilitating the
identification of potential drug candidates.'® The application of QSAR studies is
poised to revolutionize the drug discovery process, driving innovation and
accelerating the development of new therapeutic agents to address unmet medical
needs.'® The most popular classic approach to QSAR modeling utilizes descriptors
of molecular structure by using a simplified molecular input line entry system
(SMILES) to correlate with the biological activity reported in wet lab
experiments.’* These models are formulated as a training set (for defining the
model) and a test set or validation set (for checking the model with compounds of
an external validation) and are often associated with one or more drawbacks.** A
developed model must be robust enough to have high predictive power.* To
validate a QSAR as scientifically legitimate and so enable its regulatory approval,
the Organization for Economic Cooperation and Development (OECD) has
proposed five guidelines.’® For any QSAR model, "appropriate measures of
goodness-of-fit, robustness, and predictivity" must be established, according to
Principle 4 of OECD.® It highlights the necessity for both the QSAR model's
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external validation (predictivity) and internal validation (as demonstrated by
robustness and goodness-of-fit). The key to determining the trustworthiness of
predictions is to determine whether the built models can be used with any
confidence on new sets of data by using validation procedures.***> The
CORrelations And Logic (CORAL), a freeware software for QSAR modelling uses
the standardized SMILES-based optimal descriptors.!®* CORAL generates random
models based on the Monte Carlo approach, and from a probabilistic perspective,
the algorithms employed in CORAL can provide some answers to the limitations
of classic QSAR modeling issues.'® If the statistical quality of the model can be
replicated in a series of attempts to create the model for both the training and
validation sets, then a random model may be a reasonable predictor for an
endpoint.’®” Following this logic, CORAL allows random splits to build a robust
QSAR model. One can utilize the balance of correlations that is provided by the
CORAL in addition to the conventional scheme that was previously dealt with 16
The division of the training set into a calibration set and a sub-training/invisible
training set is the fundamental concept of the balancing of correlations.'® The
calibration set serves as the basis for the initial validation of the model the
preliminary check assists in preventing overtraining. An additional measure to
enhance predictability has involved analyzing the balance of correlations with
optimal slopes.® If the values of the cluster's slopes on the internal training and
calibration sets are as close to each other as possible, the plot of the experimental
versus calculated endpoint values will be perfect.618

Coumarins (2H-1-benzopyran-2-one) are a varied class of naturally occurring
pharmacophores with a wide range of bioactivities, viz., anti-inflammatory,
antioxidant, antinociceptive, hepatoprotective, antithrombotic, antiviral,
antimicrobial, antituberculosis, anticancer, antidepressant, antihyperlipidemic,
anti-Alzheimer, anticholinesterase, and antiviral activities.’*?° On the other hand,
triazoles are five-membered heterocyclic compounds containing three nitrogen
atoms that exist in two isomeric forms: 1,2,3-triazoles and 1,2,4-triazoles.?%?
Commonly found in both natural and synthetic leads, 1,2,3-triazoles have a wide
range of biological actions, including antitubercular, anticancer, antibacterial, and
antifungal properties.??? Being enriched with electronegative nitrogen atoms that
can interact in a variety of ways with biological targets, the 1,2,3-triazole ring
system has emerged as a versatile and intriguing scaffold in medicinal chemistry,
offering a myriad of pharmacological effects that contribute to its significance in
drug discovery.?? In recent attempts to synthesize multitargeting ‘hybrid
molecules’ there are enough reports on different Coumarin-1,2,3-triazole-based
molecular hybrids synthesized by coupling the coumarin to 1,2,3-triazole as
pharmacologically active segments, either in the presence or absence of tethering
agents (spacer/linker).2+?2 Additionally, enough SAR has been identified in
numerous series of potentially active coumarin hybrids with antibacterial,
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anticancer, antitubercular, antifungal, anti-Alzheimer, antidiabetic, antidepressant,
and antithrombotic properties that have been synthesized.?!??

In the given frame of context, from our recently published review
encompassing the antibacterial coumarin-1,2,3-triazole hybrids, we collected data
on coumarin-1,2,3-triazole hybrids with known activity against Staphylococcus
aureus in terms of MIC values.?* The collected data was used for the development
of Monte Carlo optimization-based predictive QSAR modeling of S. aureus
inhibitory activity of Coumarin-1,2,3-triazole hybrids.

EXPERIMENTAL
Data collection

A total of 51 coumarin-1,2,3-triazole derivatives showing minimum inhibitory
concentration (MIC) values in the range of 0.4 to 75 pg/mL against S. aureus were retrieved
from earlier published reports.?+2-* The molecular structures were drawn by using ChemDraw
v22, saved in ‘.cdxml’ format, and then converted to Simplified molecular-input line-entry
system (SMILES) by using Optical -Structure - Recognition (OSRA) online tool
(https://cactus.nci.nih.gov/cgi-bin/osra/index.cgi). The input files for building the QSAR
models corresponding to SMILES of the derivatives along with their pMIC values were saved
as text (.txt) (also see Table S-l-of supplementary material).

Descriptor Calculation

Three types of descriptors (i) SMILES-based, (ii) graph-based, and (iii) hybrid descriptors,
which are combinations of SMILES and graphs, were calculated using CORAL (CORrelation
And Logic) software (http://www.insilico.eu/coral).t’

SMILES-based descriptors: The optimal SMILES based descriptor were calculated as
follows:

SMILESDCW/(T, Nepoch) = X CW(Sk) + BX.CW(SSk) + ySCW (SSSk) +
§ CW(PAIR) + x CW (BOND) +y CW(NOSP) + z CW(HALO) +
m CW(HARD) 1)

Where T is the threshold used to classify molecular features into rare (noise) and active
based on their frequency, and Nepoch iS the number of iterations of the optimization process. CW
represents the correlation weight for the above-mentioned eight types of structural attributes.
Sk, SSk, and SSSk are local SMILES attributes as representations of molecular fragments.
PAIR, BOND, NOSP, and HALO are global SMILES attributes, while the HARD index
represents the association of BOND, NOSP, and HALO attributes. The coefficients a, B, v, 6,
X, Y, z, and m are assigned binary values only, i.e., 0 if the attribute is not used in building the
model or 1 if the attribute is used in building the model. Sk represents the sole SMILES element
(e.g., Cl..., C..., N...), SSk denotes the combination of two SMILES elements connected with
each other, and they can be represented as C1... (..., =... O..., etc. SSSy stands for the combination
of the three SMILES elements, represented as C... C... (..., C... #... N..., etc. PAIR denotes the
simultaneous presence of two SMILES atom compounds during descriptor calculation. The
index BOND is related to the presence of three categories of chemical bonds i.e., ‘=" double
bond, ‘#’ triple bond, and ‘@@’ stereospecific chemical bond. NOSP indicates the presence or
absence of nitrogen, oxygen, sulfur, and phosphorous atoms. The index HALO is related to the
presence or absence of only three halogen atoms i.e., fluorine, chlorine, and bromine.
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Graph-based descriptors: In CORAL, three types of graph-based descriptors, namely
HSG (hydrogen-suppressed graph), HFG (hydrogen-filled graph), and GAO (graph of atomic
orbitals), with many invariants, are available. The optimal graph-based descriptors are
calculated as follows:

CrNDCW(T, Nepoch) = S CW(AK) + oY CW(°ECy) + BY.CW(ECk) +
Y. CW(ECK) + 83 CW(ECK) 2
Where CW is the correlation weight of the invariants of the molecular graph. The indexes
A is the correlation weight of atomic elements, and °ECy, *ECy 2ECy, and 2ECx are the Morgan
extended connectivity for each vertex in the molecular graph of the zero, first, second, and third
order, respectively. The coefficients a, B, v, and 6 belong to invariants of molecular graphs,
which can take up only binary values, i.e., 0 if not used or 1 if used in.model building.
Hybrid descriptors: Hybrid descriptors are the combination of SMILES-based and graph-
based descriptors and are calculated as follows:

HybridDCW (T, Nepoch) = GraphDCW (T, Nepoch) + SMILESDC:W (T, NepOCh) (3)
Monte Carlo optimization

A three-step process was chosen for the generation of a Monte Carlo-based optimized
model. As required in the input format of CORAL software, the very first step entails preparing
SMILES attributes from the molecular structures in various splits. The optimization of T and
Nepoch Values for each model independently is the second step. Here, Nepocn is the number of
iterations in the Monte Carlo optimization, and T is the number of thresholds for classifying the
molecular characteristics taken from the SMILES. Herein, values 1-4 of T and 15-60 of Nepocn
were considered the most preferable combination.®! The third and final step belongs to the
calculation of descriptors (SMILES, graph, and hybrid) and optimization of correlation weights
(CW) using the balance correlation scheme of the Monte Carlo algorithm.2 The entire dataset
was divided into four different sets, namely the training set (Tr), the invisible training set (iTr),
the calibration set (C), and the validation set (V) of three random splits. The distribution of
compounds in training and various sets of three random splits have been provided in Table S-11
of the supplementary material. For each split, five models were generated using various
combinations of SMILES, graphs, and hybrid optimal descriptors with various connectivity
indices. Finally, fifteen models were obtained from three random non-identical splits.

Mechanistic interpretation

Correlation weights (CW) for structural attributes (SAKS), i.e., descriptors for SMILES,
hybrids, and fragments of local symmetry, were obtained in several probes of the Monte Carlo
optimization for the best models (M4, M10, and M11). Structural attributes were classified into
four types: promoters of increase, promoters of decrease, undefined, and blocked. Those SAKs
whose CW are positive indicate that these attributes of the derivatives of coumarin are
promoters of an increase in MIC. SAKs with negative CW are responsible for decreasing the
MIC of the derivatives. SAKs having both positive and negative correlation weights fall in the
undefined category, and all the attributes, where CW shows null values, fall under the blocked
category.

RESULTS AND DISCUSSION

Several earlier published reports on the antibacterial activity of coumarin-
1,2,3-triazole hybrids have been compiled in a review by our group.?! These
reports comprise a preliminary screening of the antibacterial activity of the
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synthesized hybrid molecules against various Gram-positive and Gram-negative
bacterial strains. The results of most of the preliminary screening have been
published in terms of either zone of inhibition or MIC values. We collected the
coumarin-1,2,3-triazole hybrids with antibacterial activities tested against S.
aureus presented in MIC for the current study.?! The descriptors of 51 molecules
with known MICs were calculated using CORAL software, which calculates
SMILES-based, graph-based, and hybrid descriptors, which are combinations of
SMILES and graph-based descriptors. The literature reports highlight the
outstanding forecasting capability of QSAR models on SMILES-based optimal
descriptors as calculated by CORAL.¥3 Using the Monte Carlo optimization
method, the CORAL software allows the user to build QSAR models as a
mathematical function of descriptors (also known as correlation weights of
fragments of quasi-SMILES) with biological activity.’* The entire dataset was
divided into four different sets, namely the training set (Tr), the invisible training
set (iTr), the calibration set (C), and the validation set (V) of three random non-
identical splits: Split 1 (Tr = 16.compounds, iTr = 14 compounds, C = 11
compounds, and V = 10 compounds); Split 2 (Tr = 15 compounds, iTr = 14
compounds, C = 11 compounds, and V = 11 compounds); and Split 3 (Tr = 11
compounds, iTr = 15 compounds; C = 14 compounds, and V = 11 compounds)
(also see table S2). Each set aimed to solve an individual task. The training set
aims to find the maximum correlation coefficient between endpoint and descriptor
for compounds present. The invisible training set is aimed at finding out whether
the correlation. is satisfactory for similar substances that are not involved in the
training set. The calibration set identifies the starting point of overtraining. For
each split, five models were generated using various combinations of SMILES,
Graph, and hybrid optimal descriptors with various connectivity indices. Finally,
fifteen models were generated after the search for the best preferable threshold
value and Nepoch Value for Monte Carlo optimization. The statistical parameters,
correlation coefficient (r?) cross-validated correlation coefficient (Q?), standard
error of estimation (s), Fischer ratio (F), mean absolute error (MAE), index of
ideality of correlation (11C), and correlation intensity index (CII), were calculated
to evaluate the predictive potential of each model (Table I).
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TABLE I: Various models for S. aureus inhibitory activity by using Monte Carlo optimization

No. Splits Parameter T, N n r2 Q? 11C Cll s MAE. F
ML 1 SMILES 1,40 Tr 16 04147 01668 05008 0.7502 0455 0347 10
iTr 14 09052 0.8791 0.4884 09264 0510 0343 115

C 11 07681 0.6661 08762 0.8670 0.362 0284 30

V 10 08036 0.7118 01263 0.8281 0535 0355 33

M2 1 SMILES 1,25 Tr 16 09062 0.8655 0.9519 0.9312 0.182 0.137 165
and HSG iTr 14 09009 0.8741 0.7171 0.9272 0.479 0389 109

with 0 C 11 0.7638 06257 0.8736 0.8526 0.309 0246 29

ECk V 10 02453 -0.5510 0.1673 0.3575 0.897 0493 3

M3 1 SMILES 1,50 Tr 16 0.8467 0.7969 0.7157 0.8887 0.233 0.188 77
and HSG iTr 14 08470 08167 0.8623 0.8694 0362 0304 66

with 1 C 11 08959 08539 0.9465 09194 0231 0178 77

ECk V10 02455 -0.21480.1270 0.5582 0.969 0.610 3

M4 1 SMILES 1,40 Tr 16 08738 08250 0.7270 0.9184 0211 0.161 97
and HFG iTr 14 08819 0.8493 09371 09177 0473 0353 90

with 0 C 11 08732 08114 09343 09066 0221 0188 62

ECk V 10 03808 00753 0.3603 0.5537 0.766 0482 5

M5 1 SMILES 1,45 Tr 16 08871 0.8462 0.7325 0.9097 0.200 0.155 110
and HEG iTr 14 08793 08515 0.6968 0.8947 0.414 0354 87

with 1 C 11 06791 04856 0.8239 0.8121 0.340 0.272 19

ECk V 10 04852 02614 0.1450 0.5698 0580 0.360 8

M6 2 SMILES 1,30 Tr 15 08593 0.8258 0.6180 0.8861 0.288 0.226 79
iTr 14 08711 0.8339 03429 09105 0286 0223 81

C 11 06806 04677 08248 07768 0.434 0301 19

V 11 06524 02616 04050 0.7163 0419 0249 17

M7 2 SMILES 1,70  Tr 15 08447 08099 0.6127 0.8804 0.303 0.230 71
and HSG iTr 14 08773 0.8443 0.2638 09136 0.250 0.181 86

with 0 C 11 07032 05015 0.8384 0.8000 0.426 0279 21

ECk V 11 06121 04713 05489 0.7854 0415 0299 14

M8 2 SMILES 1,40 Tr 15 08519 0.8210 0.8076 0.8772 0.296 0236 75
and HSG iTr 14 08973 0.8661 05188 0.9334 0.305 0254 105

with 1 C 11 07634 06097 08735 0.8201 0284 0207 29

ECk V 11 04633 01582 0.0625 0.6474 0.771 0534 8

M9 2 SMILES 2,25 Tr 15 08416 08015 0.6116 0.8806 0.306 0.246 69
and HEG iTr 14 08852 0.8598 04471 09171 0302 0237 93

with 0 C 11 06644 04191 08149 0.8271 0438 0334 18

ECk V 11 06085 04633 02208 0.7015 0801 0572 14

'\gl 2 SMILES 1,40 Tr 15 08693 0.8399 0.6216 0.9011 0.278 0.222 86
ar\‘/\‘/’it':FlG iTr 14 0.8923 0.8602 0.0793 09248 0294 0219 99

iy C 11 07627 05970 0.8733 0.8364 0330 0240 29

V 11 06788 03623 0.5865 0.7518 0511 0.381 19

'\’11 3 SMILES 4 20 v 11 09672 09478 08195 0.9687 0.087 0.065 265
iTr 15 0.8475 0.8045 0.5932 0.8851 0.624 0489 72

C 14 08889 08500 0.9428 0.9397 0.355 0.275 96

V 11 02995 -0.0298 0.5029 0.6025 0.737 0.563 4

'\’2'1 3 SMILES 1,33 Tr 11 09579 0.9282 0.8156 0.9632 0.099 0.079 205
and HSG iTr 15 0.8301 0.7703 05334 0.8923 0576 0456 64
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with 0 C 14 08099 07314 08998 0.9394 0420 0326 51
ECk V11 03844 00716 05218 06268 0891 0.750 -6

'\gl 3 SMILES 3,15 Tr 11 08739 07521 05341 0.8810 0171 0.128 62
a’;sit';SlG iTr 15 07665 0.6942 0.5871 0.8499 0.543 0418 43

. C 14 07612 06833 0.8725 0.8876 0.500 0415 38

V11 03552 -0.2766 0.3893 05673 0688 0474 5

'\fll 3 SMILES 1,23 Tr 11 09302 0.8892 0.8037 0.9414 0127 0.093 120
ar\‘lsit;'%G iTr 15 08668 0.8322 05049 0.8942 0.761 0.535 85

. C 14 08469 07822 09195 0.9543 0.440 0347 66

V11 03105 -0.0192 0.2676 06277 0706 0.545 4

'\gl 3 SMILES 3,75 Tr 11 08928 07935 0.7874 09286 0.158 0.130 75
arxit;'iG iTr 15 07843 07144 04777 0.8490 0436 0317 47

iy C 14 06740 05633 0.8205 0.8872 0.567 0483 25

V 11 0.37230.0122 0.2434 0.5971 0.649 0.462 5
T: Threshold, N: Nepoct/Number of iterations, n: Number of compounds in set, r?: Correlation
coefficient, s: Standard error of estimation, MAE: Mean absolute error, F: Fischer ration, Tr: Training
set, iTr: Invisible training set, C: calibration set, V: Validation set

A developed QSAR model must, as always, be sufficiently robust to be able
to forecast new molecular characteristics in an impartial, reliable, and precise
way.** The so-called five OECD principles, which are internationally defined, are
(i) a defined endpoint; (if) an unambiguous algorithm; (iii) a defined domain of
applicability; (iv)suitable measures of robustness, predictivity, and goodness-of-
fit; and (v) a mechanistic interpretation, if feasible.’*** Considering OECD
principles, the best models with higher predictive potential for each split are
presented in Figure 1, and their equations are depicted below:

Split 1:
PMIC = -4:1880389 (+ 0.1069537) + 0.1795520 (+ 0.0063400) * DCW (1,40) (M4)
Split 2:
PMIC = -4.4055993 (£ 0.0701103) + 0.1119546 (£ 0.0022489) * DCW (1,40) (M10)
Split 3:
PMIC = -5.1755729 (£ 0.1209286) + 0.1698881 (+ 0.0045733) * DCW(1,70)  (M11)
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Fig. 1. Monte Carlo Optimization based on best QSAR models from each split: M4 from split
1 (A), M10 from split 2 (B), and M11 from split 3 (C).

The problem of overtraining in prediction models can be calculated by using
the newly introduced parameters Index of ldeality of Correlation (IIC) and
Correlation Intensity Index (CII), which increase the predictive potential of the
model.*® The IIC is based on the correlation coefficient and mean absolute error,
while the CII indicates the statistical quality of linear regression models with a
unique ability since it is a measure that is sensitive both to the value of the
correlation coefficient and to the value of the mean absolute error (MAE).*® Both
I1C and CII can expose the drawbacks of the predictive model usually seen with
others. Favorable statistical parameters are obtained for all the models from each
split.

Mechanistic interpretation

Correlation weights (CW) for structural attributes (SAKSs) were estimated for
both SMILES and hybrid descriptors using CORAL software. Structural attributes
were classified into four types: promoters of increased activity, i.e., good
fingerprints (stable positive values), promoters of decreased activity, i.e., bad
fingerprints (stable negative values), undefined, and blocked. SAKs having both
positive and negative correlation weights fall in the undefined category, while all
the attributes, where CW shows null values, fall under the blocked category. The
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data on CW for each structural attribute, which were obtained in several probes of
the Monte Carlo optimization for the best models (M4, M10, and M11), are shown
in supplemental Table S-I1l. The structural attributes of coumarin-1,2,3-triazole
hybrids responsible for the increase in MIC value (Figure 2) were c...3...C... (i.e.
presence of two aromatic cycles at three bond distances as can be seen in
compound 42), c...2....... (i.e. presence of aromatic cycle follwed by two bonds as
can be seen in compounds 21, and 22), c...c...c... (i.e. presence of three fused
aromatic cycles as can be seen in compound 30), c...c...2... (i.e. presence of
branching on adjacent aromatic cycle as seen in compound. 46), n...n.......(i.e.
presence of adjacent Nitrogen atoms as in the compound 4), O...=...(...(i.e. presence
of Oxygen with double bonds as seen in the compound 7), c...(...CI..(i.e. presence
of aromatic cycle and Chlorine atom with branching as seen in compound 24), and
c...(...N...(i.e. presence of aromatic cycle and Nitrogen atom with branching in
between as can be seen in compound 31). On the other hand, among the hybrid
descriptor correlation weights of Morgan's extended connectivity, the promoters
responsible for the crucial increase in the inhibitory activity of the derivatives were
found to be “EC0-0...1...”, “EC1-C...6...”, “EC1-C...9....”, “EC1-N...5...”, “ ECl-
Cl.6...”, “ EC1-0..4...”, © ECI-N...2... ” and “ ECI-N...8..” of the model.
“BOND10000000” constitutes the presence of a double bond is very important for
compound’s activity.

O/LU/ F \0,/\%\ .
N N
[ X \

A\

ol

(31).c...(N... \—=(

| () 0=l |

Fig. 2. Good fingerprints causing the increase in activity against S. aureus

The structural attributes of coumarin-1,2,3-triazole hybrids responsible for the
decrease in MIC value (bad fingerprints, Figure 3) obtained from M4, M10, and
MI11 among SMILES descriptors were found to be c...(...=...(i.e. presence of
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branching between aromatic carbon and double bonding as in compound 37),
c..4...c...(i.e., the presence of two aromatic cycles separated by four bonds as
shown in compound 44), and c...(...C...(i.e., the presence of branching between
aromatic ring and aliphatic carbon as in compound 37). On the other hand, among
hybrid descriptors correlation weights of Morgans extended connectivity the
promoters responsible for the decrease of activity of the derivatives were found to
be EC0-C...2...,, EC1-C...10...,.

Fig. 3. Bad fingerprints causing the decrease in activity against S. aureus

It can be seen that promoters of the decrease effect are not very much affected
by the Morgans' extended connectivity in comparison to the promoters of the
increase. BOND11000000 (presence of a triple bond in the compound) and
HALOO00000000 (absence of a halogen atom) are detrimental to the inhibitory
activity of bacteria.

CONCLUSION

New 2D-QSAR models with good prediction ability were developed and
validated for the prediction of the antibacterial activity of coumarin-1,2,3-triazole
hybrids against S. aureus using the Monte Carlo optimization method. The
consideration of additional statistical parameters such as the such as the index of
ideality of correlation and correlation intensity index gave clear insight into the
improved predictability in all the QSAR models. Overall, among all the developed
models, M-11 may be considered best based on statistical parameters. The study
provides a significant analysis of the important structural fingerprints required to
be a potentially active substrate against S. aureus. Overall, the models will help
design novel chemical entities with the coumarin-1,2,3-triazole moiety for the
development of potent antibacterial drugs against S. aureus.
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U3BO

QSAR MOJEJOBALE HHXUBUTOPHE AKTUBHOCTU XUbPUJIA KYMAPUH-1,2,3-
TPHUA3OJIA HA STAPHYLOCOCCUS AUREUS, BASUPAHO HA MOHTE KAPJIO
OIITUMH3ALININ

KRISHNA N. MISHRA, HARISH C. UPADHYAY*, POONAM VERMA

Laboratory of Chemistry, Department of Applied Sciences, Rajkiya Engineering College (Affiliated with Dr.
A.P.J. Abdul Kalam Technical University, Lucknow), Churk, Sonbhadra-231206, India.

Y oBoj cTymuju cy 51 xymapuHcku-1,2,3-Tpra3oncku Xudpuz ca Mo3HaTUM MUHUMATHUM
BpefHocTUMa UWHxuUOWpajyhux - koHueHnTpauuja (MIC) mnpema Staphylococcus —aureus
uckopuirheHy 3a renepucame, Ha Monte Kapso sacHoBaHoM, onTumMusoBaHor QSAR mMozena Ha
CORrelations And Logic (CORAL) cod1sepy. LlenokynaH CKyI [ofiaTaka je Iofe/beH Ha YeTUPH
pasnuunTa CKyna Iojartaka, HauMe CKyT 3a yBexOdaBamwe (Tr), HEBUIUBUBU CKYTI 32 yBexkOaBame
(iTr), ckyn 3a kanudpucawme (C), ¥ ckyn 3a Banupauyjy (V) U3 Tpu ciydajHe nozesne. 3a CBaKky
nozeny, duno je reHepucaHo Ier mopena kopucrehu pasnuuurte komOuHauuje SMILES-a,
rpacdoBa, ¥ XUOPUIHNUX ONTUMATHHUX JECKPUITOPA Ca PaslIMYUTUM HHEKCHMa M0BE3aHOCTH,
NIETHAECT MoJena je J0dUjeHO U3 TpU HaCyMUUYHE HeWIeHTUYHe Mopene. 3a Hajdosbu Mofen U3
CBaKe mozesne; Kopeaauuonu koedunujent (r?) umao je om 0,9672 mo 0,8693, MOK yHAKPCHO
BaTUIUpaHK KrneduuujeHtd kopenauuje (Q?) wmwmm cy om 0,9478 no 0,8250. Tlpoceuna
anconyTtHa rpemka (MAE) 3a Hajbome moznene xe duna mamwa of 0,065. TonaTHo, caoniuteHe cy
NoKe/bHEe BpeJHOCTH WHIeKca uneanHocTy kopenauuje (I11C) u uHAeKc WHTeH3UTeTa Kopenaluje
(CII), notphyjyhu podycTHOCT, MOy3naHOCT Y MOTeHLHjan npensubama pasBUjeHUX Mozena.
Hapame, IpoLeweHd Cy NOoOpU U JIOUIM OTUCUM NPCTHjy Ha HCHOBY KOPENALMOHMX TEXHHA

CTPYKTYPHHUX aTpudyTa.
(ITpumsseno 30. MmapT; peBuaMpaHo 22. centemdpa; npuxsaheHo 12. Hosembpa 2024.)

REFERENCES

1. G. M. Cragg, D. J. Newman, Biochim. Biophys. Acta Gen. Subj. 1830 (2013) 3670
(https://doi.org/10.1016/j.bbagen.2013.02.008)

2. D.J.Newman, G. M. Cragg, J. Nat. Prod. 83 (2020) 770
(https://doi.org/10.1021/acs.jnatprod.9b01285)

3. H.C. Upadhyay, Lett. Drug Des. Discov. 20 (2023) 373
(https://doi.org/10.2174/157018082004230113144404)

4. H.C. Upadhyay, G. R. Dwivedi, M. P. Darokar, V. Chaturvedi, S. K. Srivastava,

Planta Med. 78 (2012) 79 (https://doi.org/10.1055/s-0031-1280256)

M. Dickson, J. P. Gagnon, Discov. Med. 4 (2004) 172 (PMID: 20704981)

6. M. Dickson, J. P. Gagnon, Nat. Rev. Drug. Discov. 3 (2004) 417
(https://doi.org/10.1038/nrd1382)

o



https://www.shd-pub.org.rs/index.php/JSCS/article/view/12871
https://doi.org/10.1016/j.bbagen.2013.02.008
https://doi.org/10.1021/acs.jnatprod.9b01285
https://doi.org/10.2174/157018082004230113144404
https://doi.org/10.1055/s-0031-1280256
https://doi.org/10.1038/nrd1382

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

QSAR MODELING OF COUMARIN-1,2,3-TRIAZOLE HYBRIDS 13

H. C. Upadhyay, G. R. Dwivedi, S. Roy, A. Sharma, M. P. Darokar, S. K.
Srivastava, ChemMedChem 9 (2014) 1860
(https://doi.org/10.1002/cmdc.201402027)

H. C. Upadhyay, B. S. Sisodia, H. S. Cheema, J. Agrawal, A. Pal, M. P. Darokar, S.
K. Srivastava, Nat. Prod. Commun. 8 (2013) 1591
(https://doi.org/10.1177/1934578x1300801123)

H. C. Upadhyay, M. Singh, O. Prakash, F. Khan, S. K. Srivastava, D. U. Bawankule,
SN Appl. Sci. 2 (2020) 2069 (https://doi.org/10.1007/s42452-020-03798-5)

M. Xiang, Y. Cao, W. Fan, L. Chen, Y. Mo, Comb. Chem. High Throughput Screen.
15 (2012) 328 (https://doi.org/10.2174/138620712799361825)

S. Surabhi, B. Singh, J. Drug Deliv. Therapeu. 8 (2018) 504
(https://doi.org/10.22270/jddt.v8i5.1894)

G. R. Dwivedi, H. C. Upadhyay, D. K. Yadav, V. Singh, S. K. Srivastava, F. Khan,
N. S. Darmwal, M. P. Darokar, Chem. Biol. Drug. Des. 83 (2014) 482
(https://doi.org/10.1111/chdd.12263)

M. Rudrapal, D. Chetia, J. Drug Deliv. Therapeu. 10 (2020) 225
(https://doi.org/10.22270/jddt.v10i4.4218)

P. Gramatica, QSAR Comb. Sci. 26 (2007) 694
(https://doi.org/10.1002/gsar.200610151)

OECD: OECD principles for the validation, for regulatory purposes, of (quantitative)
structure-activity relationships models (2004)

E. Benfenati, A. A. Toropov, A. P. Toropova, A. Manganaro, R. Gonella Diaza,
Chem. Biol. Drug. Des. 77 (2011) 471 (https://doi.org/10.1111/].1747-
0285.2011.01117:x)

A. T. K. Baidya, K. Ghosh, S. A. Amin, N. Adhikari, J. Nirmal, T. Jha, S. Gayen,
New J. Chem. 44 (2020) 4129 (https://doi.org/10.1039/c9nj058259)

K. Bagri, A. Kumar, M. Nimbhal, P. Kumar, Mol. Simul. 46 (2020) 777
(https://doi.org/10.1080/08927022.2020.1770753)

T. G. Kraljevi¢, A. Harej, M. Sedi¢, S. K. Paveli¢, V. Stepani¢, D. Drenjancevic, J.
Talapko, S. Rai¢-Mali¢, Eur. J. Med. Chem. 124 (2016) 794
(https://doi.org/10.1016/j.ejmech.2016.08.062)

Y. L. Fan, X. Ke, M. Liu, J. Heterocycl. Chem. 55 (2018) 791
(https://doi.org/10.1002/jhet.3112)

H. C. Upadhyay, Curr. Top. Med. Chem. 21 (2021) 737
(https://doi.org/10.2174/1568026621666210303145759)

K. N. Mishra, H. C. Upadhyay, Frontiers Drug Discov. 2 (2022) 1072448
(https://doi.org/10.3389/fddsv.2022.1072448)

J. M. Madar, L. A. Shastri, S. L. Shastri, R. Guda, M. Holiyachi, N. S. Naik, S.
Dodamani, S. Jalapure, V. A. Sungar, Chemical Data Collections 17-18 (2018) 219
(https://doi.org/10.1016/j.cdc.2018.09.005)

P. Yadav, B. Kumar, H. K. Gautam, S. K. Sharma, J. Chem. Sci. 129 (2017) 211
(https://doi.org/10.1007/s12039-016-1214-x)

S. Carmel Yesudass, P. Ranjan, H. P. Suresh, J. Heterocycl. Chem. 59 (2022) 309
(https://doi.org/10.1002/jhet.4385)

M. H. Shaikh, D. D. Subhedar, B. B. Shingate, F. A. Kalam Khan, J. N. Sangshetti,
V. M. Khedkar, L. Nawale, D. Sarkar, G. R. Navale, S. S. Shinde, Med. Chem. Res.
25 (2016) 790 (https://doi.org/10.1007/s00044-016-1519-9)



https://doi.org/10.1002/cmdc.201402027
https://doi.org/10.1177/1934578x1300801123
https://doi.org/10.1007/s42452-020-03798-5
https://doi.org/10.2174/138620712799361825
https://doi.org/10.22270/jddt.v8i5.1894
https://doi.org/10.1111/cbdd.12263
https://doi.org/10.22270/jddt.v10i4.4218
https://doi.org/10.1002/qsar.200610151
https://doi.org/10.1111/j.1747-0285.2011.01117.x
https://doi.org/10.1111/j.1747-0285.2011.01117.x
https://doi.org/10.1039/c9nj05825g
https://doi.org/10.1080/08927022.2020.1770753
https://doi.org/10.1016/j.ejmech.2016.08.062
https://doi.org/10.1002/jhet.3112
https://doi.org/10.2174/1568026621666210303145759
https://doi.org/10.3389/fddsv.2022.1072448
https://doi.org/10.1016/j.cdc.2018.09.005
https://doi.org/10.1007/s12039-016-1214-x
https://doi.org/10.1002/jhet.4385
https://doi.org/10.1007/s00044-016-1519-9

27

28.

29.

30.

31.

32.

33.

34.

35.

MISHRA et al.

. S. M. Sutar, H. M. Savanur, C. Patil, G. M. Pawashe, G. Aridoss, K. M. Kim, R. G.
Kalkhambkar, Chem. Data Coll. 28 (2020) 100480
(https://doi.org/10.1016/j.cdc.2020.100480)

A. V. Lipeeva, D. O. Zakharov, L. G. Burova, T. S. Frolova, D. S. Baev, |.-\V.
Shirokikh, A. N. Evstropov, O. I. Sinitsyna, T. G. Tolsikova, E. E. Shults, Molecules
24 (2019) 2126 (https://doi.org/10.3390/molecules24112126)

M. N. Joy, Y. D. Bodke, S. Telkar, V. A. Bakulev, J. Mex. Chem. Soc. 64 (2020) 53
(https://doi.org/10.29356/jmcs.v64i1.1116)

X. M. Peng, K. V. Kumar, G. L. V. Damu, C. H. Zhou, Sci. China Chem. 59 (2016)
878 (https://doi.org/10.1007/s11426-015-0351-0)

P. Kumar, A. Kumar, J. Sindhu, SAR QSAR Environ. Res. 30 (2019) 63
(https://doi.org/10.1080/1062936X.2018.1564067)

A. A. Toropov, A. P. Toropova, Toxicol. Mech. Methods 29 (2019) 43
(https://doi.org/10.1080/15376516.2018.1506851)

A. A. Toropov, E. Benfenati, Curr. Drug. Discov. Technol. 4 (2007) 77
(https://doi.org/10.2174/157016307781483432)

A. Kumar, S. Chauhan, Arch. Pharm. (Weinheim) 350 (2017) e1600268
(https://doi.org/10.1002/ardp.201600268)

A. P. Toropova, A. A. Toropov; A. Roncaglioni, E. Benfenati, Molecules 28 (2023)
6587 (https://doi.org/10.3390/molecules28186587).



https://doi.org/10.1016/j.cdc.2020.100480
https://doi.org/10.3390/molecules24112126
https://doi.org/10.29356/jmcs.v64i1.1116
https://doi.org/10.1007/s11426-015-0351-0
https://doi.org/10.1080/1062936X.2018.1564067
https://doi.org/10.1080/15376516.2018.1506851
https://doi.org/10.2174/157016307781483432
https://doi.org/10.1002/ardp.201600268
https://doi.org/10.3390/molecules28186587

