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Abstract: In this study, 51 coumarin-1,2,3-triazole hybrids with known minimum 

inhibitory concentration (MIC) values against Staphylococcus aureus were used 

for the generation of a Monte Carlo based optimized QSAR model on 

CORrelations And Logic (CORAL) software. The entire dataset was divided into 

four different sets, namely the training set (Tr), the invisible training set (iTr), 

the calibration set (C), and the validation set (V) of three random splits. For each 

split, five models were generated using various combinations of SMILES, 

graphs, and hybrid optimal descriptors with various connectivity indices. 

Finally, fifteen models were obtained from three random, non-identical splits. 

For the best model from each split, the correlation coefficient (r2) ranged from 

0.9672 to 0.8693, while the cross-validated correlation coefficient (Q2) ranged 

from 0.9478 to 0.8250. The mean absolute error (MAE) for the best models was 

less than 0.065. Additionally, favorable values of the index of ideality of 

correlation (IIC) and correlation intensity index (CII) were reported, justifying 

the robustness, reliability, and predictive potential of the developed models. 

Further, good and bad fingerprints were estimated based on correlation weights 

for structural attributes. 

Keywords: CORAL software; antibacterial; structural attributes; index of ideality 

of correlation; correlation intensity index. 

INTRODUCTION 

Natural products have played a crucial role in the discovery of drugs for almost 

all types of diseases.1 The natural products as such and their semisynthetic analogs 

contribute more than half of the approved drugs of today.2,3 Because of safety and 

compatibility, natural products are and will be at the center of the drug discovery 

process.4 Traditional drug discovery methods often rely on trial-and-error 

approaches, which are time-consuming and resource-intensive.5 However, due to 
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dependence on several factors, it is not possible to estimate exactly, but on average, 

the development of a single drug from a new chemical entity may cost up to $1 

billion over twelve to fifteen years.5,6 While natural products continue to inspire 

drug discovery efforts, there is a growing recognition of the need for innovative 

approaches that integrate advances in computational biology, synthetic chemistry, 

and biotechnology to overcome the limitations of traditional drug discovery.7,8 By 

leveraging interdisciplinary approaches and cutting-edge technologies, researchers 

can harness the potential of natural resources more effectively and develop novel 

therapeutics with improved efficacy, safety, and sustainability.9 Computer-aided 

drug design (CADD) has emerged as a powerful tool in the field of pharmaceutical 

research that utilizes computational methods to facilitate the discovery and 

development of new drugs.10 The CADD approach integrates principles from 

various disciplines, such as chemistry, biology, and computer science, to expedite 

the drug discovery process.11,12 CADD-based rational drug design approaches, viz., 

virtual screening by docking simulations, quantitative structure-activity 

relationship (QSAR) studies for lead optimization and prediction of bioactivities, 

and in silico prediction of physiochemical characteristics of molecules in terms of 

absorption, distribution, metabolism, and toxicity, help the researchers prioritize 

the most promising candidates for further experimental validation, significantly 

reducing the time and cost associated with traditional screening methods.10 

QSAR studies play a pivotal role in drug discovery and development by 

enabling the rational design, optimization, and selection of potential drug 

candidates. QSAR models provide valuable insights into the relationship between 

the chemical structure of compounds and their biological activities.13 QSAR 

modeling utilizes computational techniques to analyze the structural features of 

molecules and predict their pharmacological properties, thus facilitating the 

identification of potential drug candidates.10 The application of QSAR studies is 

poised to revolutionize the drug discovery process, driving innovation and 

accelerating the development of new therapeutic agents to address unmet medical 

needs.10 The most popular classic approach to QSAR modeling utilizes descriptors 

of molecular structure by using a simplified molecular input line entry system 

(SMILES) to correlate with the biological activity reported in wet lab 

experiments.14 These models are formulated as a training set (for defining the 

model) and a test set or validation set (for checking the model with compounds of 

an external validation) and are often associated with one or more drawbacks.14 A 

developed model must be robust enough to have high predictive power.14 To 

validate a QSAR as scientifically legitimate and so enable its regulatory approval, 

the Organization for Economic Cooperation and Development (OECD) has 

proposed five guidelines.15 For any QSAR model, "appropriate measures of 

goodness-of-fit, robustness, and predictivity" must be established, according to 

Principle 4 of OECD.15 It highlights the necessity for both the QSAR model's 
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external validation (predictivity) and internal validation (as demonstrated by 

robustness and goodness-of-fit). The key to determining the trustworthiness of 

predictions is to determine whether the built models can be used with any 

confidence on new sets of data by using validation procedures.13,15 The 

CORrelations And Logic (CORAL), a freeware software for QSAR modelling uses 

the standardized SMILES-based optimal descriptors.16 CORAL generates random 

models based on the Monte Carlo approach, and from a probabilistic perspective, 

the algorithms employed in CORAL can provide some answers to the limitations 

of classic QSAR modeling issues.16 If the statistical quality of the model can be 

replicated in a series of attempts to create the model for both the training and 

validation sets, then a random model may be a reasonable predictor for an 

endpoint.16,17 Following this logic, CORAL allows random splits to build a robust 

QSAR model. One can utilize the balance of correlations that is provided by the 

CORAL in addition to the conventional scheme that was previously dealt with.16,17 

The division of the training set into a calibration set and a sub-training/invisible 

training set is the fundamental concept of the balancing of correlations.16 The 

calibration set serves as the basis for the initial validation of the model the 

preliminary check assists in preventing overtraining. An additional measure to 

enhance predictability has involved analyzing the balance of correlations with 

optimal slopes.16 If the values of the cluster's slopes on the internal training and 

calibration sets are as close to each other as possible, the plot of the experimental 

versus calculated endpoint values will be perfect.16,18 

Coumarins (2H-1-benzopyran-2-one) are a varied class of naturally occurring 

pharmacophores with a wide range of bioactivities, viz., anti-inflammatory, 

antioxidant, antinociceptive, hepatoprotective, antithrombotic, antiviral, 

antimicrobial, antituberculosis, anticancer, antidepressant, antihyperlipidemic, 

anti-Alzheimer, anticholinesterase, and antiviral activities.19,20 On the other hand, 

triazoles are five-membered heterocyclic compounds containing three nitrogen 

atoms that exist in two isomeric forms: 1,2,3-triazoles and 1,2,4-triazoles.21,22 

Commonly found in both natural and synthetic leads, 1,2,3-triazoles have a wide 

range of biological actions, including antitubercular, anticancer, antibacterial, and 

antifungal properties.21,22 Being enriched with electronegative nitrogen atoms that 

can interact in a variety of ways with biological targets, the 1,2,3-triazole ring 

system has emerged as a versatile and intriguing scaffold in medicinal chemistry, 

offering a myriad of pharmacological effects that contribute to its significance in 

drug discovery.21,22 In recent attempts to synthesize multitargeting ‘hybrid 

molecules’ there are enough reports on different Coumarin-1,2,3-triazole-based 

molecular hybrids synthesized by coupling the coumarin to 1,2,3-triazole as 

pharmacologically active segments, either in the presence or absence of tethering 

agents (spacer/linker).21,22 Additionally, enough SAR has been identified in 

numerous series of potentially active coumarin hybrids with antibacterial, 
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anticancer, antitubercular, antifungal, anti-Alzheimer, antidiabetic, antidepressant, 

and antithrombotic properties that have been synthesized.21,22  

In the given frame of context, from our recently published review 

encompassing the antibacterial coumarin-1,2,3-triazole hybrids, we collected data 

on coumarin-1,2,3-triazole hybrids with known activity against Staphylococcus 

aureus in terms of MIC values.21 The collected data was used for the development 

of Monte Carlo optimization-based predictive QSAR modeling of S. aureus 

inhibitory activity of Coumarin-1,2,3-triazole hybrids. 

EXPERIMENTAL 

Data collection 

A total of 51 coumarin-1,2,3-triazole derivatives showing minimum inhibitory 

concentration (MIC) values in the range of 0.4 to 75 μg/mL against S. aureus were retrieved 

from earlier published reports.21,23–30 The molecular structures were drawn by using ChemDraw 

v22, saved in ‘.cdxml’ format, and then converted to Simplified molecular-input line-entry 

system (SMILES) by using Optical Structure Recognition (OSRA) online tool 

(https://cactus.nci.nih.gov/cgi-bin/osra/index.cgi). The input files for building the QSAR 

models corresponding to SMILES of the derivatives along with their pMIC values were saved 

as text (.txt) (also see Table S-I of supplementary material). 

Descriptor Calculation  

Three types of descriptors (i) SMILES-based, (ii) graph-based, and (iii) hybrid descriptors, 

which are combinations of SMILES and graphs, were calculated using CORAL (CORrelation 

And Logic) software (http://www.insilico.eu/coral).17  

SMILES-based descriptors: The optimal SMILES based descriptor were calculated as 

follows: 

 SMILESDCW(T, Nepoch) = α∑CW(Sk) + β∑CW(SSk) + γ∑CW (SSSk) +  

 δ CW(PAIR) + x CW (BOND) + y CW(NOSP) + z CW(HALO) +  

 m CW(HARD) (1) 

Where T is the threshold used to classify molecular features into rare (noise) and active 

based on their frequency, and Nepoch is the number of iterations of the optimization process. CW 

represents the correlation weight for the above-mentioned eight types of structural attributes. 

Sk, SSk, and SSSk are local SMILES attributes as representations of molecular fragments. 

PAIR, BOND, NOSP, and HALO are global SMILES attributes, while the HARD index 

represents the association of BOND, NOSP, and HALO attributes. The coefficients α, β, γ, δ, 

x, y, z, and m are assigned binary values only, i.e., 0 if the attribute is not used in building the 

model or 1 if the attribute is used in building the model. Sk represents the sole SMILES element 

(e.g., Cl..., C..., N...), SSk denotes the combination of two SMILES elements connected with 

each other, and they can be represented as C1... (..., =... O..., etc. SSSk stands for the combination 

of the three SMILES elements, represented as C... C... (..., C... #... N..., etc. PAIR denotes the 

simultaneous presence of two SMILES atom compounds during descriptor calculation. The 

index BOND is related to the presence of three categories of chemical bonds i.e., ‘=’ double 

bond, ‘#’ triple bond, and ‘@@’ stereospecific chemical bond. NOSP indicates the presence or 

absence of nitrogen, oxygen, sulfur, and phosphorous atoms. The index HALO is related to the 

presence or absence of only three halogen atoms i.e., fluorine, chlorine, and bromine.  
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Graph-based descriptors: In CORAL, three types of graph-based descriptors, namely 

HSG (hydrogen-suppressed graph), HFG (hydrogen-filled graph), and GAO (graph of atomic 

orbitals), with many invariants, are available. The optimal graph-based descriptors are 

calculated as follows: 

 GraphDCW(T, Nepoch) = ∑CW(Ak) + α∑CW(0ECk) + β∑CW(1ECk) +  

 γ∑CW(2ECk) + δ∑CW(3ECk) (2) 

Where CW is the correlation weight of the invariants of the molecular graph. The indexes 

Ak is the correlation weight of atomic elements, and 0ECk, 
1ECk, 

2ECk, and 3ECk are the Morgan 

extended connectivity for each vertex in the molecular graph of the zero, first, second, and third 

order, respectively. The coefficients α, β, γ, and δ belong to invariants of molecular graphs, 

which can take up only binary values, i.e., 0 if not used or 1 if used in model building. 

Hybrid descriptors: Hybrid descriptors are the combination of SMILES-based and graph-

based descriptors and are calculated as follows: 

 HybridDCW (T, Nepoch) = GraphDCW (T, Nepoch) + SMILESDCW (T, Nepoch) (3) 

Monte Carlo optimization    

A three-step process was chosen for the generation of a Monte Carlo-based optimized 

model. As required in the input format of CORAL software, the very first step entails preparing 

SMILES attributes from the molecular structures in various splits. The optimization of T and 

Nepoch values for each model independently is the second step. Here, Nepoch is the number of 

iterations in the Monte Carlo optimization, and T is the number of thresholds for classifying the 

molecular characteristics taken from the SMILES. Herein, values 1-4 of T and 15-60 of Nepoch 

were considered the most preferable combination.31 The third and final step belongs to the 

calculation of descriptors (SMILES, graph, and hybrid) and optimization of correlation weights 

(CW) using the balance correlation scheme of the Monte Carlo algorithm.32 The entire dataset 

was divided into four different sets, namely the training set (Tr), the invisible training set (iTr), 

the calibration set (C), and the validation set (V) of three random splits. The distribution of 

compounds in training and various sets of three random splits have been provided in Table S-II 

of the supplementary material. For each split, five models were generated using various 

combinations of SMILES, graphs, and hybrid optimal descriptors with various connectivity 

indices. Finally, fifteen models were obtained from three random non-identical splits. 

Mechanistic interpretation 

Correlation weights (CW) for structural attributes (SAKs), i.e., descriptors for SMILES, 

hybrids, and fragments of local symmetry, were obtained in several probes of the Monte Carlo 

optimization for the best models (M4, M10, and M11). Structural attributes were classified into 

four types: promoters of increase, promoters of decrease, undefined, and blocked. Those SAKs 

whose CW are positive indicate that these attributes of the derivatives of coumarin are 

promoters of an increase in MIC. SAKs with negative CW are responsible for decreasing the 

MIC of the derivatives. SAKs having both positive and negative correlation weights fall in the 

undefined category, and all the attributes, where CW shows null values, fall under the blocked 

category. 

RESULTS AND DISCUSSION 

Several earlier published reports on the antibacterial activity of coumarin-

1,2,3-triazole hybrids have been compiled in a review by our group.21 These 

reports comprise a preliminary screening of the antibacterial activity of the 
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synthesized hybrid molecules against various Gram-positive and Gram-negative 

bacterial strains. The results of most of the preliminary screening have been 

published in terms of either zone of inhibition or MIC values. We collected the 

coumarin-1,2,3-triazole hybrids with antibacterial activities tested against S. 

aureus presented in MIC for the current study.21 The descriptors of 51 molecules 

with known MICs were calculated using CORAL software, which calculates 

SMILES-based, graph-based, and hybrid descriptors, which are combinations of 

SMILES and graph-based descriptors. The literature reports highlight the 

outstanding forecasting capability of QSAR models on SMILES-based optimal 

descriptors as calculated by CORAL.16,33 Using the Monte Carlo optimization 

method, the CORAL software allows the user to build QSAR models as a 

mathematical function of descriptors (also known as correlation weights of 

fragments of quasi-SMILES) with biological activity.16 The entire dataset was 

divided into four different sets, namely the training set (Tr), the invisible training 

set (iTr), the calibration set (C), and the validation set (V) of three random non-

identical splits: Split 1 (Tr = 16 compounds, iTr = 14 compounds, C = 11 

compounds, and V = 10 compounds); Split 2 (Tr = 15 compounds, iTr = 14 

compounds, C = 11 compounds, and V = 11 compounds); and Split 3 (Tr = 11 

compounds, iTr = 15 compounds, C = 14 compounds, and V = 11 compounds) 

(also see table S2). Each set aimed to solve an individual task. The training set 

aims to find the maximum correlation coefficient between endpoint and descriptor 

for compounds present. The invisible training set is aimed at finding out whether 

the correlation is satisfactory for similar substances that are not involved in the 

training set. The calibration set identifies the starting point of overtraining. For 

each split, five models were generated using various combinations of SMILES, 

Graph, and hybrid optimal descriptors with various connectivity indices. Finally, 

fifteen models were generated after the search for the best preferable threshold 

value and Nepoch value for Monte Carlo optimization. The statistical parameters, 

correlation coefficient (r2) cross-validated correlation coefficient (Q2), standard 

error of estimation (s), Fischer ratio (F), mean absolute error (MAE), index of 

ideality of correlation (IIC), and correlation intensity index (CII), were calculated 

to evaluate the predictive potential of each model (Table I).  
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TABLE I: Various models for S. aureus inhibitory activity by using Monte Carlo optimization 

No. Splits Parameter T, N  n r2 Q2 IIC CII s MAE F 

M1 1 SMILES 1, 40 Tr 16 0.4147 0.1668 0.5008 0.7502 0.455 0.347 10 

    iTr 14 0.9052 0.8791 0.4884 0.9264 0.510 0.343 115 

    C 11 0.7681 0.6661 0.8762 0.8670 0.362 0.284 30 

    V 10 0.8036 0.7118 0.1263 0.8281 0.535 0.355 33 

M2 1 SMILES 

and HSG 

with 0 

ECk 

1, 25 Tr 16 0.9062 0.8655 0.9519 0.9312 0.182 0.137 165 

   iTr 14 0.9009 0.8741 0.7171 0.9272 0.479 0.389 109 

   C 11 0.7638 0.6257 0.8736 0.8526 0.309 0.246 29 

   V 10 0.2453 -0.5510 0.1673 0.3575 0.897 0.493 3 

M3 1 SMILES 

and HSG 

with 1 

ECk 

1, 50 Tr 16 0.8467 0.7969 0.7157 0.8887 0.233 0.188 77 

   iTr 14 0.8470 0.8167 0.8623 0.8694 0.362 0.304 66 

   C 11 0.8959 0.8539 0.9465 0.9194 0.231 0.178 77 

   V 10 0.2455 -0.2148 0.1270 0.5582 0.969 0.610 3 

M4 1 SMILES 

and HFG 

with 0 

ECk 

1, 40 Tr 16 0.8738 0.8250 0.7270 0.9184 0.211 0.161 97 

   iTr 14 0.8819 0.8493 0.9371 0.9177 0.473 0.353 90 

   C 11 0.8732 0.8114 0.9343 0.9066 0.221 0.188 62 

   V 10 0.3808 0.0753 0.3603 0.5537 0.766 0.482 5 

M5 1 SMILES 

and HFG 

with 1 

ECk 

1, 45 Tr 16 0.8871 0.8462 0.7325 0.9097 0.200 0.155 110 

   iTr 14 0.8793 0.8515 0.6968 0.8947 0.414 0.354 87 

   C 11 0.6791 0.4856 0.8239 0.8121 0.340 0.272 19 

   V 10 0.4852 0.2614 0.1450 0.5698 0.580 0.360 8 

M6 2 SMILES 1, 30 Tr 15 0.8593 0.8258 0.6180 0.8861 0.288 0.226 79 

   iTr 14 0.8711 0.8339 0.3429 0.9105 0.286 0.223 81 

   C 11 0.6806 0.4677 0.8248 0.7768 0.434 0.301 19 

   V 11 0.6524 0.2616 0.4050 0.7163 0.419 0.249 17 

M7 2 SMILES 

and HSG 

with 0 

ECk 

1, 70 Tr 15 0.8447 0.8099 0.6127 0.8804 0.303 0.230 71 

   iTr 14 0.8773 0.8443 0.2638 0.9136 0.250 0.181 86 

   C 11 0.7032 0.5015 0.8384 0.8000 0.426 0.279 21 

   V 11 0.6121 0.4713 0.5489 0.7854 0.415 0.299 14 

M8 2 SMILES 

and HSG 

with 1 

ECk 

1, 40 Tr 15 0.8519 0.8210 0.8076 0.8772 0.296 0.236 75 

   iTr 14 0.8973 0.8661 0.5188 0.9334 0.305 0.254 105 

   C 11 0.7634 0.6097 0.8735 0.8201 0.284 0.207 29 

   V 11 0.4633 0.1582 0.0625 0.6474 0.771 0.534 8 

M9 2 SMILES 

and HFG 

with 0 

ECk 

2, 25 Tr 15 0.8416 0.8015 0.6116 0.8806 0.306 0.246 69 

   iTr 14 0.8852 0.8598 0.4471 0.9171 0.302 0.237 93 

   C 11 0.6644 0.4191 0.8149 0.8271 0.438 0.334 18 

   V 11 0.6085 0.4633 0.2208 0.7015 0.801 0.572 14 

M1

0 
2 SMILES 

and HFG 

with 1 

ECk 

1, 40 Tr 15 0.8693 0.8399 0.6216 0.9011 0.278 0.222 86 

   iTr 14 0.8923 0.8602 0.0793 0.9248 0.294 0.219 99 

   C 11 0.7627 0.5970 0.8733 0.8364 0.330 0.240 29 

   V 11 0.6788 0.3623 0.5865 0.7518 0.511 0.381 19 

M1

1 
3 

SMILES 
1, 70 Tr 11 0.9672 0.9478 0.8195 0.9687 0.087 0.065 265 

   iTr 15 0.8475 0.8045 0.5932 0.8851 0.624 0.489 72 

   C 14 0.8889 0.8500 0.9428 0.9397 0.355 0.275 96 

   V 11 0.2995 -0.0298 0.5029 0.6025 0.737 0.563 4 

M1

2 
3 SMILES 

and HSG 

1, 33 Tr 11 0.9579 0.9282 0.8156 0.9632 0.099 0.079 205 

   iTr 15 0.8301 0.7703 0.5334 0.8923 0.576 0.456 64 
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  with 0 

ECk 

 C 14 0.8099 0.7314 0.8998 0.9394 0.420 0.326 51 

   V 11 0.3844 0.0716 0.5218 0.6268 0.891 0.750 6 

M1

3 
3 SMILES 

and HSG 

with 1 

ECk 

3, 15 Tr 11 0.8739 0.7521 0.5341 0.8810 0.171 0.128 62 

   iTr 15 0.7665 0.6942 0.5871 0.8499 0.543 0.418 43 

   C 14 0.7612 0.6833 0.8725 0.8876 0.500 0.415 38 

   V 11 0.3552 -0.2766 0.3893 0.5673 0.688 0.474 5 

M1

4 
3 SMILES 

and HFG 

with 0 

ECk 

1, 23 Tr 11 0.9302 0.8892 0.8037 0.9414 0.127 0.093 120 

   iTr 15 0.8668 0.8322 0.5049 0.8942 0.761 0.535 85 

   C 14 0.8469 0.7822 0.9195 0.9543 0.440 0.347 66 

   V 11 0.3105 -0.0192 0.2676 0.6277 0.706 0.545 4 

M1

5 
3 SMILES 

and HFG 

with 1 

ECk 

3, 75 Tr 11 0.8928 0.7935 0.7874 0.9286 0.158 0.130 75 

   iTr 15 0.7843 0.7114 0.4777 0.8490 0.436 0.317 47 

   C 14 0.6740 0.5633 0.8205 0.8872 0.567 0.483 25 

   V 11 0.3723 0.0122 0.2434 0.5971 0.649 0.462 5 

T: Threshold, N: Nepoch/Number of iterations, n: Number of compounds in set, r2: Correlation 

coefficient, s: Standard error of estimation, MAE: Mean absolute error, F: Fischer ration, Tr: Training 

set, iTr: Invisible training set, C: calibration set, V: Validation set 
 

A developed QSAR model must, as always, be sufficiently robust to be able 

to forecast new molecular characteristics in an impartial, reliable, and precise 

way.9,14 The so-called five OECD principles, which are internationally defined, are 

(i) a defined endpoint; (ii) an unambiguous algorithm; (iii) a defined domain of 

applicability; (iv) suitable measures of robustness, predictivity, and goodness-of-

fit; and (v) a mechanistic interpretation, if feasible.15,34  Considering OECD 

principles, the best models with higher predictive potential for each split are 

presented in Figure 1, and their equations are depicted below: 

Split 1:  

pMIC = -4.1880389 (± 0.1069537) + 0.1795520 (± 0.0063400) * DCW (1,40) (M4) 

Split 2: 

pMIC = -4.4055993 (± 0.0701103) + 0.1119546 (± 0.0022489) * DCW (1,40) (M10) 

Split 3: 

pMIC =  -5.1755729 (± 0.1209286) +    0.1698881 (± 0.0045733) * DCW(1,70) (M11) 
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Fig. 1. Monte Carlo Optimization based on best QSAR models from each split: M4 from split 

1 (A),  M10 from split 2 (B), and M11 from split 3 (C). 

The problem of overtraining in prediction models can be calculated by using 

the newly introduced parameters Index of Ideality of Correlation (IIC) and 

Correlation Intensity Index (CII), which increase the predictive potential of the 

model.18,35 The IIC is based on the correlation coefficient and mean absolute error, 

while the CII indicates the statistical quality of linear regression models with a 

unique ability since it is a measure that is sensitive both to the value of the 

correlation coefficient and to the value of the mean absolute error (MAE).35 Both 

IIC and CII can expose the drawbacks of the predictive model usually seen with 

others. Favorable statistical parameters are obtained for all the models from each 

split. 

Mechanistic interpretation 

Correlation weights (CW) for structural attributes (SAKs) were estimated for 

both SMILES and hybrid descriptors using CORAL software. Structural attributes 

were classified into four types: promoters of increased activity, i.e., good 

fingerprints (stable positive values), promoters of decreased activity, i.e., bad 

fingerprints (stable negative values), undefined, and blocked. SAKs having both 

positive and negative correlation weights fall in the undefined category, while all 

the attributes, where CW shows null values, fall under the blocked category. The 
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data on CW for each structural attribute, which were obtained in several probes of 

the Monte Carlo optimization for the best models (M4, M10, and M11), are shown 

in supplemental Table S-III. The structural attributes of coumarin-1,2,3-triazole 

hybrids responsible for the increase in MIC value (Figure 2) were c...3...c...  (i.e. 

presence of two aromatic cycles at three bond distances as can be seen in 

compound 42), c...2.......  (i.e. presence of aromatic cycle follwed by two bonds as 

can be seen in compounds 21, and 22), c...c...c... (i.e. presence of three fused 

aromatic cycles as can be seen in compound 30), c...c...2... (i.e. presence of 

branching on adjacent aromatic cycle as seen in compound 46), n...n.......(i.e. 

presence of adjacent Nitrogen atoms as in the compound 4), O...=...(...(i.e. presence 

of Oxygen with double bonds as seen in the compound 7), c...(...Cl..(i.e. presence 

of aromatic cycle and Chlorine atom with branching as seen in compound 24), and 

c...(...N…(i.e. presence of aromatic cycle and Nitrogen atom with branching in 

between as can be seen in compound 31). On the other hand, among the hybrid 

descriptor correlation weights of Morgan's extended connectivity, the promoters 

responsible for the crucial increase in the inhibitory activity of the derivatives were 

found to be “EC0-O...1...”, “EC1-C...6...”, “EC1-C...9....”, “EC1-N...5…”, “ EC1-

Cl..6…”, “ EC1-O...4…”, “ EC1-N...2...”, and “ EC1-N...8...” of the model. 

“BOND10000000” constitutes the presence of a double bond is very important for 

compound’s activity.                                                                                

 
Fig. 2. Good fingerprints causing the increase in activity against S. aureus  

The structural attributes of coumarin-1,2,3-triazole hybrids responsible for the 

decrease in MIC value (bad fingerprints, Figure 3) obtained from M4, M10, and 

M11 among SMILES descriptors were found to be c…(…=…(i.e. presence of 
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branching between aromatic carbon and double bonding as in compound 37), 

c...4...c...(i.e., the presence of two aromatic cycles separated by four bonds as 

shown in compound 44), and c...(...C...(i.e., the presence of branching between 

aromatic ring and aliphatic carbon as in compound 37). On the other hand, among 

hybrid descriptors correlation weights of Morgans extended connectivity the 

promoters responsible for the decrease of activity of the derivatives were found to 

be EC0-C...2..., EC1-C...10…,. 

 

Fig. 3. Bad fingerprints causing the decrease in activity against S. aureus  

It can be seen that promoters of the decrease effect are not very much affected 

by the Morgans' extended connectivity in comparison to the promoters of the 

increase. BOND11000000 (presence of a triple bond in the compound) and 

HALO00000000 (absence of a halogen atom) are detrimental to the inhibitory 

activity of bacteria. 

CONCLUSION 

New 2D-QSAR models with good prediction ability were developed and 

validated for the prediction of the antibacterial activity of coumarin-1,2,3-triazole 

hybrids against S. aureus using the Monte Carlo optimization method. The 

consideration of additional statistical parameters such as the such as the index of 

ideality of correlation and correlation intensity index gave clear insight into the 

improved predictability in all the QSAR models. Overall, among all the developed 

models, M-11 may be considered best based on statistical parameters. The study 

provides a significant analysis of the important structural fingerprints required to 

be a potentially active substrate against S. aureus. Overall, the models will help 

design novel chemical entities with the coumarin-1,2,3-triazole moiety for the 

development of potent antibacterial drugs against S. aureus. 
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SUPPLEMENTARY MATERIAL 

Additional data are available electronically at the pages of journal website: 

https://www.shd-pub.org.rs/index.php/JSCS/article/view/12871, or from the corresponding 

author on request. 
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И З В О Д 
 

QSAR МОДЕЛОВАЊЕ ИНХИБИТОРНЕ АКТИВНОСТИ ХИБРИДА КУМАРИН-1,2,3-
ТРИАЗОЛА НА STAPHYLOCOCCUS AUREUS, БАЗИРАНО НА МОНТЕ КАРЛО 

ОПТИМИЗАЦИЈИ 

KRISHNA N. MISHRA, HARISH C. UPADHYAY*, POONAM VERMA 

Laboratory of Chemistry, Department of Applied Sciences, Rajkiya Engineering College (Affiliated with Dr. 

A.P.J. Abdul Kalam Technical University, Lucknow), Churk, Sonbhadra-231206, India. 

У овој студији су 51 кумарински-1,2,3-триазолски хибрид са познатим минималним 
вредностима инхибирајућих концентрација (MIC) према Staphylococcus aureus 
искоришћени за генерисање, на Монте Карло заснованом, оптимизованог QSAR модела на  
CORrelations And Logic (CORAL) софтверу. Целокупан скуп података је подељен на четири 
различита скупа података, наиме скуп за увежбавање (Tr), невидљиви скуп за увежбавање 
(iTr), скуп за калибрисање (C), и скуп за валидацију (V) из три случајне поделе. За сваку 
поделу, било је генерисано пет модела користећи различите комбинације SMILES-а, 
графова, и хибридних оптималних дескриптора са различитим индексима повезаности, 
петнаест модела је добијено из три насумичне неидентичне поделе. За најбољи модел из 
сваке поделе, корелациони коефицијент (r2) ишао је од 0,9672 до 0,8693, док унакрсно 
валидирани кпефицијенти корелације (Q2) ишли су од 0,9478 до 0,8250. Просечна 
апсолутна грешка (MAE) за најбоље моделе хе била мања од 0,065.  Додатно, саопштене су 
пожељне вредности индекса идеалности корелације (IIC) и индекс интензитета корелације 
(CII), потврђујући робустност, поузданост и потенцијал предвиђања развијених модела. 
Надаље, процењени су добри и лоши отисци прстију на иснову корелационих тежина 
структурних атрибута. 

(Примљено 30. март; ревидирано 22. септембра; прихваћено 12. новембра 2024.) 
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