

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc.00(0) S1-S36 (2024)

SUPPLEMENTARY MATERIAL TO Synthesis and *in vitro* study of redox properties of pyrrole and halogenated pyrrole derivatives

MILOŠ R. PETKOVIĆ¹*, JELENA M. KOTUR-STEVULJEVIĆ², PREDRAG M. JOVANOVIĆ¹, MILOŠ D. JOVANOVIĆ¹, NIKOLA M. MITROVIĆ¹, MILENA R. SIMIĆ¹, GORDANA D. TASIĆ¹ AND VLADIMIR M. SAVIĆ¹

¹University of Belgrade-Faculty of Pharmacy, Department of Organic Chemistry, Vojvode Stepe 450, 11221 Belgrade, Serbia, and ²University of Belgrade-Faculty of Pharmacy, Department of Medical Biochemistry, Vojvode Stepe 450, 11221 Belgrade, Serbia.

1.	¹ H and ¹³ C NMR data of al	ll final compoundsS2-S6
2.	¹ H and ¹³ C NMR spectra o	f all newly
	synthesised compounds	
3.	Redox status parameters	

^{*} Corresponding author. E-mail: milosp@pharmacy.bg.ac.rs

PETKOVIĆ et al..

5*H-pyrrolo*[2,1-*a*]*isoindol-5-one* (2) The mixture of (2-iodophenyl)(1H-pyrrol-1-yl)methanone 1 (1 mmol, 1 eq), K₃PO₄ (1.5 mmol, 1.5 eq), Pd(OAc)₂ (0,1 mmol, 0,1 eq) and PPh₃ (0,2 mmol, 0,2 eq) in acetonitrile (5 ml) was heated in a nitrogen atmosphere at reflux for 16 h. After completion of the reaction, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure. The crude mixture was purified by flash chromatography to afford the product. Flash chromatography (SiO2, 9:1 v/v petroleum ether–diethyl ether) afforded the product (281.2 mg, 81%) as a yellow solid, mp 62–63 °C.

¹H NMR (400 MHz, CDCl3) δ 7.55 (d, J = 7.2 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.19 (d, J = 7.2 Hz, 1H), 7.09 (t, J = 7.0 Hz, 1H), 6.93 (s, 1H), 6.10 (d, J = 12.7 Hz, 2H);

¹³C NMR (101 MHz, CDCl3) δ 163.0, 136.4, 135.6, 134.4, 132.1, 127.1, 125.8, 119.5, 117.1, 116.6, 107.3;

The spectral data are consistent with those reported in the literature.²⁴

1,2,3-tribromo-5H-pyrrolo[2,1-a]isoindol-5-one (3) 5H-pyrrolo[2,1-a]isoindol-5-one (2) (0.5 mmol, 1 eq) was dissolved in CCl₄ (10 mL) and bromine (4 mmol, 8 eq) was added dropwise. After 16 hours at room temperature, the reaction mixture was diluted with CH₂Cl₂ (15 mL) and the organic solvent was washed with 10% Na₂S₂O₃ (20 mL) and brine (20 mL). After drying with anhydrous Na₂SO₄, the organic solvent was evaporated to obtain the product (195.3 mg, 97%) as an orange solid, mp 207-208 °C.

¹H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 7.4 Hz, 1H), 7.57-7.51 (m, 2H), 7.31-7.26 (m, 1H).

¹³C NMR (101 MHz, CDCl3) & 160.7, 135.3, 134.1, 133.6, 129.5, 128.4, 126.7, 119.6, 111.3, 102.1, 100.2.

General procedure for the synthesis of the amides M1-M6 and M10-M15

Compound 2 or 3 (0.1 mmol, 1 eq) was dissolved in amine (0.5 mL) and heated at 100° C for 5 minutes. After cooling, the excess amine was removed under reduced pressure. The crude mixture was dissolved in CH₂Cl₂ (15 mL), washed with 2M HCl (10 mL) and brine (10 mL). After drying with anhydrous Na₂SO₄, the organic solvent was evaporated under reduced pressure to obtain the product.

General procedure for the synthesis of the amides M7-M8

Compound 2 or 3 (0.1 mmol, 1 eq) was dissolved in ethylendiamine (0.5 mL) and heated at 100° C for 5 minutes. After cooling, the excess amine was removed under reduced pressure. To a solution of the crude mixture in THF (10 mL), vanillin (0.1 mmol, 1 eq) and MgSO₄ (0.5 mmol, 5 eq) were added and the mixture was stirred overnight. After filtration, the solvent was evaporated and the crude mixture was dissolved in MeOH (5 mL) and NaBH₄ (0.2 mmol, 2 eq) was added. The mixture was stirred for 2 hours at room temperature and, after evaporation of the solvent under reduced pressure, subjected directly to flash chromatography to obtain the product.

4-((benzylamino)methyl)-2-methoxyphenol (9) To a solution of benzylamine (0.1 mmol, 1 eq) in THF (10 mL), vanillin (0.1 mmol, 1 eq) and MgSO₄ (0.5 mmol, 5 eq) were added and the mixture was stirred overnight. After filtration, the solvent was evaporated and the crude mixture was dissolved in MeOH (5 mL) and NaBH₄ (0.2 mmol, 2 eq) was added. The mixture was stirred for 2 hours at room temperature and, after evaporation of the solvent under reduced pressure, subjected directly to flash chromatography. Flash chromatography (SiO2, EtOAc) afforded the product (133.7 mg, 55%) as a white, amorphous solid.

O.

S3

¹H NMR (400 MHz, CDCl3) δ 7.33 (d, J = 4.4 Hz, 4H), 7.25 (t, J = 4.2 Hz, 1H), 6.88 (s, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 2H), 3.73 (s, 2H).

¹³C NMR (101 MHz, CDCl3) δ 146.7, 144.8, 140.2, 132.0, 128.4, 128.2, 126.9, 121.0, 114.3, 110.9, 55.8, 53.1, 53.0.

The spectral data are consistent with those reported in the literature.²⁵

Morpholin-4-yl -[2-(1H-pyrrol-2-yl)-phenyl]-methanone (M1)

Compound M1 (17.9 mg, 70%) was synthesized following the general procedure, as a beige solid, mp: 162-163°C.

¹H NMR (400 MHz, CDCl₃) δ 9.20 (s, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.44 – 7.36 (m, 1H), 7.30 – 7.21 (m, 2H), 6.85 (d, J = 1.4 Hz, 1H), 6.41 (s, 1H), 6.27 (dd, J = 5.9, 2.7 Hz, 1H), 4.05 (dd, J = 12.9, 2.3 Hz, 1H), 3.76 – 3.69 (m, 1H), 3.50 – 3.36 (m, 3H), 3.14 – 3.06 (m, 1H), 2.99 – 2.91 (m, 1H), 2.81-2-76 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 132.6, 130.4, 130.4, 129.5, 128.2, 126.6, 126.5, 119.4, 109.6, 108.4, 66.6, 66.6, 47.6, 42.4.

The spectral data are consistent with those reported in the literature.²³

N-Allyl-2-(1H-pyrrol-2-yl)-benzamide (M2)

Compound M2 (16.0 mg, 71%) was synthesized following the general procedure, as a brown, amorphous solid.

¹H NMR (400 MHz, CDCl₃) δ 10.14 (s, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.42 (t, J = 8.0 Hz, 2H), 7.29 – 7.21 (m, 1H), 6.85 (d, J = 1.5 Hz, 1H), 6.48 (s, 1H), 6.26 (d, J = 2.6 Hz, 1H), 5.91 (s, 1H), 5.87 – 5.75 (m, 1H), 5.21 – 5.08 (m, 2H), 4.00 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) § 171.9, 133.4, 133.3, 131.3, 130.7, 130.4, 129.0, 127.9, 126.0, 119.4, 117.0, 109.2, 108.6, 42.6.

The spectral data are consistent with those reported in the literature.²³

Pyrrolidin-1-yl-[2-(1H-pyrrol-2-yl)-phenyl]-methanone (M3)

Compound M3 (19.7 mg, 82%) was synthesized following the general procedure as a light-brown solid, mp: 146-147°C.

¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.42 – 7.34 (m, 1H), 7.29 – 7.20 (m, 2H), 6.82 (d, J = 1.5 Hz, 1H), 6.46 (s, 1H), 6.24 (d, J = 3.2 Hz, 1H), 3.59 (t, J = 6.6 Hz, 2H), 3.02 (bs, 2H), 1.85 (dd, J = 13.7, 6.8 Hz, 2H), 1.71 (bs, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 171.2, 133.8, 130.8, 130.0, 129.4, 128.4, 126.7, 126.1, 119.4, 109.1, 107.8, 48.6, 45.8, 25.8, 24.5.

The spectral data are consistent with those reported in the literature.²³

Morpholino(2-(3,4,5-tribromo-1H-pyrrol-2-yl)phenyl)methanone (M4)

Compound M4 (40.2 mg, 82%) was synthesized following the general procedure as a beige solid, mp: 221-222°C.

¹H NMR (400 MHz, CDCl₃) δ 9.98 (s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 7.3 Hz, 1H), 3.96 (d, J = 13.2 Hz, 1H), 3.75 (dd, J = 9.5, 5.9 Hz, 1H), 3.57 – 3.49 (m, 1H), 3.48 – 3.40 (m, 1H), 3.38 – 3.29 (m, 1H), 3.16 – 3.08 (m, 1H), 3.01 – 2.90 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 134.6, 130.5, 129.3, 129.1, 128.6, 127.2, 126.6, 102.8, 100.9, 98.9, 66.7, 66.7, 47.5, 42.3.

HRMS (ESI) m/z calcd. for $[C_{15}H_{13}Br_3N_2O_2-H]^-$ 488.84544; found, 488.84533.

N-allyl-2-(3,4,5-tribromo-1H-pyrrol-2-yl)benzamide (M5)

Compound **M5** (38.2 mg, 83%) was synthesized following the general procedure as a light-brown solid, mp: 171-172°C.

PETKOVIĆ et al..

¹H NMR (400 MHz, CDCl₃) δ 11.00 (bs, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H), 7.32 (t, J = 7.6 Hz, 1H), 5.83 – 5.65 (m, 2H), 5.11 (dd, J = 18.3, 13.7 Hz, 2H), 3.87 (t, J = 5.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 135.2, 132.9, 131.3, 130.3, 129.1, 128.4, 128.3, 128.1, 117.4, 102.5, 101.1, 98.8, 42.6.

HRMS (ESI) m/z calcd. for $[C_{14}H_{11}Br_3N_2O - H]^-$ 458.83487; found, 458.83470.

Pyrrolidin-1-yl(2-(3,4,5-tribromo-1H-pyrrol-2-yl)phenyl)methanone (M6)

Compound **M6** (45.5mg, 96%) was synthesized following the general procedure as a lightbrown solid, mp: 161-162°C.

¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.30 (d, *J* = 7.1 Hz, 1H), 3.54 (t, *J* = 7.0 Hz, 2H), 3.07 (s, 2H), 1.88 (dd, *J* = 13.8, 6.9 Hz, 2H), 1.80 – 1.73 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.0, 136.0, 130.6, 129.2, 129.1, 128.1, 127.1, 126.6, 102.6, 100.7, 98.3, 48.9, 45.9, 25.8, 24.4.

HRMS (ESI) m/z calcd. for [C₁₅H₁₃Br₃N₂O -H]⁻ 472.85052; found, 472.85027.

N-(2-((4-hydroxy-3-methoxybenzyl)amino)ethyl)-2-(1H-pyrrol-2-yl)benzamide (M7)

Compound M7 was synthesized following the general procedure. Flash chromatography (SiO2, 1:1 v/v petroleum ether–EtOAc) afforded the product (19.0 mg, 52%) as an orange amorphous solid.

¹H NMR (400 MHz, CDCl₃) δ 10.37 (s, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 7.3 Hz, 2H), 7.19 (t, J = 7.4 Hz, 1H), 6.79 (d, J = 8.5 Hz, 3H), 6.71 (d, J = 8.1 Hz, 1H), 6.51 (s, 1H), 6.45 (s, 1H), 6.23 (s, 1H), 3.75 (s, 3H), 3.67 (s, 2H), 3.45 (d, J = 4.8 Hz, 2H), 2.75 (t, J = 5.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 171.9, 146.7, 145.0, 133.2, 131.2, 130.6, 130.3, 129.0, 128.1, 126.1, 121.3, 119.4, 114.4, 110.9, 109.2, 108.6, 55.8, 53.2, 47.7, 39.3.

HRMS (ESI) m/z calcd. for $[C_{21}H_{23}N_3O_3-H]^-$ 364.16667; found, 364.16636.

N-(2-((4-hydroxy-3-methoxybenzyl)amino)ethyl)-2-(3,4,5-tribromo-1H-pyrrol-2-yl)benzamide (M8)

Compound **M8** was synthesized following the general procedure. Flash chromatography (SiO2, 1:2 v/v petroleum ether–EtOAc) afforded the product (36.5 mg, 61%) as a light-brown solid, mp: 85-86°C.

¹H NMR (400 MHz, CDCl₃) δ 10.40 (s, 1H), 7.74 (d, J = 7.7 Hz, 0.23H, rotamer a), 7.69 (d, J = 7.7 Hz, 0.77H, rotamer b), 7.47 (dd, J = 15.5, 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 1H), 6.88 – 6.79 (m, 1H), 6.77 (s, 1H), 6.73 (d, J = 8.0 Hz, 1H), 6.47 (bs, 0.6H, rotamer b), 6.37 (bs, 0.4H, rotamer a), 3.81 (s, 3H), 3.66 (d, J = 5.8 Hz, 2H), 3.42 – 3.32 (m, 2H), 2.74-2.68 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.6, 170.2, 146.6, 146.6, 145.2, 135.4, 131.5, 130.3, 129.7, 129.1, 128.6, 128.4, 128.2, 128.1, 121.6, 118.4, 114.3, 111.3, 100.7, 62.8, 55.9, 53.1, 50.8, 47.5, 47.3, 39.0, 29.7.

HRMS (ESI) m/z calcd. for $[C_{21}H_{20}Br_3N_3O_3-H]^-$ 597.89820; found, 597.89785.

N-(prop-2-yn-1-yl)-2-(1H-pyrrol-2-yl)benzamide (M10)

Compound **M10** (16.8 mg, 75%) was synthesized following the general procedure as a brown solid, mp: 91-92°C.

¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.42 (dd, J = 9.7, 7.9 Hz, 2H), 7.23 (dd, J = 13.9, 6.4 Hz, 1H), 6.85 (s, 1H), 6.47 (s, 1H), 6.26 (d, J = 2.8 Hz, 1H), 6.07 (s, 1H), 4.13 (dd, J = 5.2, 2.5 Hz, 2H), 2.23 (t, J = 2.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 171.4, 132.3, 131.4, 130.7, 130.4, 129.1, 128.1, 126.1, 119.6, 109.3, 108.8, 78.8, 72.1, 29.9.

HRMS (ESI) m/z calcd. for $[C_{14}H_{12}N_2O - H]^2$ 223.08769; found, 223.08765.

N-Benzyl-2-(1H-pyrrol-2-yl)-benzamide (M11)

Compound M11 (21.0 mg, 76%) was synthesized following the general procedure as a beige solid, mp: 109-110°C.

¹H NMR (400 MHz, CDCl₃) δ 10.10 (s, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.49 – 7.36 (m, 2H), 7.34 – 7.24 (m, 3H), 7.20 (t, J = 7.9 Hz, 3H), 6.81 (s, 1H), 6.47 (s, 1H), 6.26 (d, J = 2.6 Hz, 1H), 6.13 (s, 1H), 4.54 (d, J = 5.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 171.8, 137.4, 133.2, 131.3, 130.6, 130.4, 129.0, 128.8, 127.8, 127.7, 127.7, 126.0, 119.5, 109.2, 108.6, 44.3.

The spectral data are consistent with those reported in the literature.²³

N-propyl-2-(1H-pyrrol-2-yl)benzamide (M12)

Compound M12 (16.9 mg, 74%) was synthesized following the general procedure as a beige solid, mp: 109-110°C.

¹H NMR (400 MHz, CDCl₃) δ 10.21 (s, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.40 (dd, J = 7.2, 5.0 Hz, 2H), 7.21 (t, J = 7.5 Hz, 1H), 6.84 (d, J = 1.3 Hz, 1H), 6.47 (s, 1H), 6.26 (dd, J = 5.5, 2.7 Hz, 1H), 5.87 (s, 1H), 3.33 (dd, J = 13.5, 6.7 Hz, 2H), 1.53 (dd, J = 14.6, 7.3 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 172.1, 133.6, 131.2, 130.8, 130.2, 128.9, 127.8, 125.8, 119.4, 109.1, 108.4, 41.9, 22.6, 11.3.

HRMS (ESI) m/z calcd. for $[C_{14}H_{16}N_2O - H]^2$ 227.11899; found, 227.11897.

N-(prop-2-yn-1-yl)-2-(3,4,5-tribromo-1H-pyrrol-2-yl)benzamide (M13)

Compound M13 (40.3 mg, 88%) was synthesized following the general procedure as a beige solid, mp: 179-180°C.

¹H NMR (400 MHz, CDCl₃) δ 10.79 (s, 1H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 1H), 5.93 (s, 1H), 4.06 (dd, *J* = 5.1, 2.4 Hz, 2H), 2.25 (d, *J* = 2.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 134.5, 131.5, 130.6, 128.9, 128.5, 128.4, 128.2, 102.7, 101.2, 99.1, 78.4, 72.3, 30.0.

HRMS (ESI) m/z calcd. for $[C_{14}H_9Br_3N_2O H]^-$ 456.81922; found, 456.81911.

N-benzyl-2-(3,4,5-tribromo-1H-pyrrol-2-yl)benzamide (M14)

Compound M14 (37.2 mg, 73%) was synthesized following the general procedure as a light-brown solid, mp: 160-161°C.

¹H NMR (400 MHz, CDCl₃) δ 10.89 (s, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.52 – 7.44 (m, 2H), 7.36 – 7.27 (m, 4H), 7.12 (d, J = 7.0 Hz, 2H), 6.04 (s, 1H), 4.44 (d, J = 5.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 136.9, 135.4, 131.3, 130.2, 129.1, 128.9, 128.4, 128.3, 127.9, 127.8, 127.6, 102.6, 101.0, 98.9, 44.4.

HRMS (ESI) m/z calcd. for [C₁₈H₁₃Br₃N₂O -H]⁻ 508.85052; found, 508.85041.

N-propyl-2-(3,4,5-tribromo-1H-pyrrol-2-yl)benzamide (M15)

Compound M15 (40.2 mg, 87%) was synthesized following the general procedure as a brown solid, mp: $147-148^{\circ}C$.

PETKOVIĆ et al..

¹H NMR (400 MHz, CDCl₃) δ 11.28 (s, 1H), 7.65 (d, J = 7.7 Hz, 1H), 7.50 – 7.41 (m, 2H), 7.31 (t, J = 7.6 Hz, 1H), 5.71 (s, 1H), 3.19 (dd, J = 13.4, 6.7 Hz, 2H), 1.40 (dd, J = 14.5, 7.3 Hz, 2H), 0.83 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 135.5, 131.2, 130.1, 129.3, 128.4, 128.2, 128.2, 102.3, 101.0, 98.7, 41.9, 22.6, 11.2.

HRMS (ESI) m/z calcd. for $[C_{14}H_{13}Br_3N_2O - H]^-$ 460.85052; found, 460.85051.

Fig S1. Compound **3** - ¹H NMR spectrum (400 MHz, CDCl₃)

Fig S2. Compound **3** - ¹³C NMR spectrum (101 MHz, CDCl₃)

Fig S3. Compound M4 - ¹H NMR spectrum (400 MHz, CDCl₃)

Fig S4. Compound M4 - ¹³C NMR spectrum (101 MHz, CDCl₃)

Fig S5. Compound M5 - ¹H NMR spectrum (400 MHz, CDCl₃)

Fig S6. Compound M5 - ¹³C NMR spectrum (101 MHz, CDCl₃)

Fig S10. Compound M7 - ¹³C NMR spectrum (101 MHz, CDCl₃)

Fig S12. Compound M8 - ¹³C NMR spectrum (101 MHz, CDCl₃)

Fig S17. Compound M13 - ¹H NMR spectrum (400 MHz, CDCl₃)

		TOS		SHC
Sample	PAB (U/L)	(umol/L)	TAS (µmol/L)	(mmol/L)
Blank	100.7 ± 10.7	36.2±19.8	633±80	0.179±0.035
(serum +	-			
H ₂ O)				
M1	$66.8 \pm 1.0*$	23.5±3.1	923±29	0.280±0.012
M2	$27.2 \pm 1.5*$	22.5 ± 5.5	1030±23*	0.273 ± 0.022
	M1			
M3	$63.0 \pm 0.7*$	18.7 ± 0.7	896±8	0.260 ± 0.006
	M2			
M4	$77.2 \pm 1.2*$	18.4 ± 1.8	852±23	0.334±0.117
2.65	M2, M4	22.0.2.5		*
M5	97.2 ± 1.2	23.8±3.5	755±33	0.252 ± 0.021
	M1,M2,M3	25.0.1.0	724+25	0.010+0.000
M6	96.1 ± 1.8	25.0±1.8	734±35	0.312 ± 0.028
	M1,M2,M3	21.210.4	12(2) 20*	0.251+0.052
M /	$44.6 \pm 4.2^{*}$	21.2±0.4	1262±28*	0.251 ± 0.053
MO	M5,M6	21.912.6	M3,M4,M5,M6	0 224+0 012
M8	95.1 ± 0.1	21.8±2.0	10/0±18*	0.224 ± 0.013
MO	M1,M2,M3,M17	10 4 2 2	1051+10*	0.252+0.004
1419	90.9 ± 1.9	19.4±3.5	1031±19	0.232 ± 0.004
M10	1011,1012,1013,1017	87 5+14 6*	646+67	0 220±0 121
MIO	43.0 ± 3.7	$62.3 \pm 14.0^{\circ}$	040±07 M2 M7 M8	0.550±0.121 *
	M0	M1,M2,M3,	MO	
	11/17	M7 M8 M9	1019	
M11	$40.9 \pm 3.5*$	65 3+8 3	492+93	0 282+0 053
	M4 M5 M6 M8	05.5±0.5	M1 M2 M3	0.202±0.055
	M9		M4 M7 M8	
			M9	
M12	$41.0 \pm 5.2^{*}$	45.8±1.2	405±12	0.268 ± 0.046
	M4.M5.M6.M8.		M1.M2.M3	
	M9		M4,M5,M7	
			M8,M9	
M13	79.7 ± 4.0	51.0±1.0	280±37*	0.241 ± 0.004
	M2,M7,M10,M1		M1,M2,M3	
	1		M4,M5,M6,	
	M12		M7,M8,M9	
			M10	
M14	82.3 ± 3.3	48.5±12.1	727±69	0.270 ± 0.057
	M2,M7,M10,M1		M7,M8	
	1			
	M12			
M15	85.1 ± 1.1	111.9±7.8*	533±28	0.388 ± 0.107
	M2,M7,M10,	M1,M2,M3,	M2,M3,M7	*
	M11,M12	M4,M5,M6,	M8,M9	

Table S1. Redox status parameters in serum pool after incubation with 15 new substances with or without TBH

0

S29

۵

S	30		PETKOVIĆ et al		
			M7,M8,M9,		
			M12,M13,		
			M15		
	M1+TBH	91.0 ± 1.0	51.5 ± 1.0	858±28	0.153 ± 0.001
	M2+1BH	$54.4 \pm 0.7^{*,\pi}$	51.5±0.3	919±30	0.141 ± 0.003
	M3+TRH	88.4 ± 0.1	62 3+0 9	822+56	0 127+0 042
	WIJ + I DII	M2TBH	02.5±0.7	022±30	0.127±0.042
	M4+TBH	88.6 ± 0.3	55.1±0.1	776±25	0.160±0.001
		M2TBH			#
	M5+TBH	106.9 ± 0.2	50.6 ± 4.4	757±1	0.152±0.018
		M2TBH			
	M6+TBH	108.1 ± 1.1	59.3±0.4	703±7	0.117 ± 0.018
		M2TBH	51.0+2.9	1142:20	#
	M/+IBH	$/2.3 \pm 0.8^{*,"}$	51.9±2.8	1142±39	0.131±0.009
				M41DH,M51DH M6TBH	
	M8+TBH	105.9 ± 0.2	53.7±3.4	931±14	0.132±0.037
		M2TBH,			
		M7TBH			
	M9+TBH	106.1 ± 1.0	53.3 ± 7.6	842 ± 82	0.123 ± 0.021
		M2TBH,			
	MIGITOU	M/TBH	56 612 2	546125	0 155 0 022
	M10+1BH	$4/./\pm 1.0^{+}$	30.0±3.3	040±20 Мотри м7три	0.155±0.022 #
		M4TRH		M2TBH,M7TBH	
		M5TBH,		MOTDI	
		М6ТВН,			
		M7TBH,			
		М8ТВН,			
		M9TBH		4=0.0=	a 4 - a - a - a - a
	мп+твн	$62.6 \pm 10.7*$	53.6±8.7	470±97	0.152±0.018
		MIIBH, MATDU		MIIBH,MZIBH M2TDU M7TDU	
		M41DH, M5TBH		MSIDH,M/IDH M8TRH M9TRH	
		M6TBH,			
		M8TBH,			
		M9TBH			
	M12+TBH	$65.9\pm8.0*$	65.9 ± 9.0	770±165#	0.181 ± 0.037
		M5TBH,		M7TBH	
		M6TBH,			
		M81BH, MOTDU			
	M13+TRH	100.3 + 1.6	63 3+8 2	570+47	0 150+0 016
	WIIJ ' I DII	M2TBH.M7TBH	05.5-0.2	M2TBH.M7TBH	0.100-0.010
		, M10TBH,		M8TBH	
		M11TBH,			
-		M12TBH			

P from ANOVA; post hoc Tukey test with letters indicate significant differences with distinct substances

PETKOVIĆ et al..

PETKOVIĆ et al..

S35

PETKOVIĆ et al..

Samples	Prooxi score	Antioxi score	Oxy score
Serum	-0.2 (-0.7 - 0.3)	0.0 (0.0 - 0.0)	-0.2 (-0.7 - 0.3)
M2-100%	-49.8 (-50.948.8)	16.4 (15.9-16.9)	-66.2 (-66.865.7)
M2-50%	-37.4 (-38.935.9)	8.0 (4.1-11.9)	-45.4 (-47.843.0)
M2-25%	-29.8 (-30.928.7)	4.2 (3.5-4.9)	-34.0 (-34.433.6)
M7-100%	-39.4 (-41.137.6)	28.5 (27.5 - 29.5)	-67.8 (-70.665.1)
M7-50%	-30.9 (-32.629.1)	20.8 (20.0 - 21.5)	-51.7 (-52.750.6)
M7-25%	-20.6 (-20.720.4)	12.1 (10.9 - 13.2)	-32.6 (-33.931.4)
M10 100%	-38.0 (-39.836.2)	22.9 (19.9 - 25.9)	-60.8 (-65.756.0)
M10 50%	-29.4 (-35.623.1)	12.4 (11.2 - 13.6	-41.7 (-49.234.3)
M10 25%	-11.2 (-15.37.2)	8.7 (8.6-8.8)	-19.9 (-24.015.8)
M11 100%	-33.7 (-34.432.9)	14.3 (12.0 - 16.5	-47.9 (-49.446.4)
M11 50%	-9.7 (-13.75.6)	12.4 (12.3-12.5)	-22.0 (-26.018.0)
M11 25%	10.3 (8.0 - 12.7)	16.0 (14.4 - 17.7)	-5.7 (-9.71.7)
M12 100%	-33.3 (-34.432.3)	11.8 (10.4 - 13.2)	-45.1 (-45.544.7)
M12 50%	-21.8 (-27.316.4)	18.1 (13.1 - 23.2)	-40.0 (-50.429.5)
M12 25%	-13.8 (-19.28.3)	8.8 (4.5 - 13.0)	-22.5 (-23.821.2)
E 2.0	-17.6 (-17.817.5)	9.5 (9.4 - 9.6)	-27.2 (-27.227.1)
E 1.0	-11.5 (-14.78.3)	3.0 (2.1 - 3.9)	-14.5 (-18.610.4)
E 0.500	-8.0 (-8.27.7)	4.0 (3.9 - 4.1)	-12.0 (-12.311.7)
E 0.250	-4.8 (-4.94.7)	1.7 (1.3 - 2.2)	-6.5 (-7.05.9)
Serum+Trolox 0.125	-5.0 (-5.64.4)	-1.4 (-4.8 - 2.1)	-3.6 (-7.6 - 0.4)

 Table S2. Calculated values of prooxy, antioxy and oxy score of tested compounds in three different concentrations