

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc.00(0) S1-S10 (2024)

SUPPLEMENTARY MATERIAL TO Different electrode modification protocols for evaluating the watersplitting properties of a P(V)-metalloporphyrin

BOGDAN-OVIDIU TARANU*

National Institute of Research and Development for Electrochemistry and Condensed Matter, Dr. A. Paunescu Podeanu Street, No. 144, 300569 Timisoara, Romania.

EQUATIONS

 $E_{\text{RHE}} = E_{\text{Ag/AgCl(sat. KCl)}} + 0.059 \text{ pH} + E^{\circ}_{\text{Ag/AgCl(sat. KCl)}}$ (S-1)

- $\eta_{\text{OER}} = E_{\text{RHE}} 1.23$ (S-2)
 - $\eta_{\text{HER}} = |\mathbf{E}_{\text{RHE}}| \tag{S-3}$
 - $\eta = b \times \log(j) + a \tag{S-4}$

$$j_{dl} = \frac{j_a + j_c}{2} \tag{S-5}$$

$$EASA = \frac{C_{dl} \times S_{geom}}{C_s}$$
(S-6)

where E_{RHE} / V is the converted potential *vs.* RHE; $E_{Ag/AgCl(sat. KCl)}$ / V is the measured potential *vs.* the Ag/AgCl(sat. KCl) reference electrode; $E^{\circ}_{Ag/AgCl(sat. KCl)} = 0.197$ V; η_{OER} / V is the O₂ evolution overpotential; η_{HER} / V is the H₂ evolution overpotential; η / V is the overpotential; j / A cm⁻² is the current density; b / V dec⁻¹ is the Tafel slope; j_{dl} / A cm⁻² is the capacitive current density; j_a / A cm⁻² is the absolute value of the anodic j corresponding to a given scan rate value, at an electrochemical potential value where there are only double-layer adsorption and desorption features; j_c / A cm⁻² is the absolute value of the cathodic j corresponding to a given scan rate value, at an electrochemical potential value and desorption features; j_c / A cm⁻² is the absolute value of the cathodic j corresponding to a given scan rate value, at an electrochemical potential value and desorption features; j_c / A cm⁻² is the absolute value of the cathodic j corresponding to a given scan rate value, at an electrochemical potential value where there are only double-layer adsorption and desorption features; EASA / cm² is the electrochemically active surface area; C_{dl} / F cm⁻² is the electric double-layer capacitance; S_{geom} / cm² is the geometric surface of the electrode and C_s / F cm⁻² is the specific capacitance.¹⁻⁴

^{*} Corresponding author. E-mail: <u>b.taranu84@gmail.com</u>; Phone: +40740955505 <u>https://doi.org/10.2298/JSC241004105T</u>

Fig. S-1. Anodic polarization curves recorded on GC_0 and on (a) $GC_{P1-PhCN-1}$, $GC_{P1-DMF-1}$, $GC_{P1-DMF-1}$, $GC_{P1-DMF-1}$, $GC_{P1-DMF-1}$, $GC_{P1-DMF-1}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-3}$, $GC_{P1-DMS0-3}$, $GC_{P1-CH3CN-3}$, $GC_{P1-THF-3}$, $GC_{P1-DCM-3}$ and $GC_{P1-EtOH-3}$. Electrolyte solution: 0.1 mol $L^{-1} H_2SO_4$. $\nu = 5 \text{ mV s}^{-1}$.

Fig. S-2. Anodic polarization curves recorded on GC_0 and on (a) $GC_{P1-PhCN-1}$, $GC_{P1-DMF-1}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-2}$, $GC_{P1-DMF-3}$, $GC_{P1-DMSO-3}$, $GC_{P1-CH3CN-3}$, $GC_{P1-THF-3}$, $GC_{P1-DCM-2}$ and $GC_{P1-EtOH-3}$. Electrolyte solution: 0.1 mol L^{-1} KCl. $\nu = 5$ mV s⁻¹.

Fig. S-3. Anodic polarization curves recorded on GC₀ and on (a) GC_{P1-PhCN-1}, GC_{P1-DMF-1}, GC_{P1-DMS0-1}, GC_{P1-CH3CN-1}, GC_{P1-THF-1}, GC_{P1-DCM-1} and GC_{P1-EtOH-1}; (b) GC_{P1-PhCN-2}, GC_{P1-DMF-2}, GC_{P1-DMS0-2}, GC_{P1-CH3CN-2}, GC_{P1-THF-2}, GC_{P1-DCM-2} and GC_{P1-EtOH-2} and (c) on GC_{P1-PhCN-3}, GC_{P1-DMF-3}, GC_{P1-DMS0-3}, GC_{P1-CH3CN-3}, GC_{P1-THF-3}, GC_{P1-DCM-3} and GC_{P1-EtOH-3}. Electrolyte solution: 1 mol L⁻¹ KOH. *v* = 5 mV s⁻¹.

Fig. S-4. Cathodic polarization curves recorded on GC₀ and on (a) GC_{P1-PhCN-1}, GC_{P1-DMF-1}, GC_{P1-DMS0-1}, GC_{P1-CH3CN-1}, GC_{P1-THF-1}, GC_{P1-DCM-1} and GC_{P1-EiOH-1}; (b) GC_{P1-PhCN-2}, GC_{P1-DMS0-2}, GC_{P1-CH3CN-2}, GC_{P1-THF-2}, GC_{P1-DCM-2} and GC_{P1-EiOH-2} and (c) on GC_{P1-PhCN-3}, GC_{P1-DMS0-3}, GC_{P1-CH3CN-3}, GC_{P1-THF-3}, GC_{P1-DCM-3} and GC_{P1-EiOH-3}. Electrolyte solution: 0.1 mol L⁻¹ H₂SO₄. *v* = 5 mV s⁻¹.

Fig. S-5. Cathodic polarization curves recorded on GC₀ and on (a) GC_{P1-PhCN-1}, GC_{P1-DMF-1}, GC_{P1-DMS0-1}, GC_{P1-CH3CN-1}, GC_{P1-THF-1}, GC_{P1-DCM-1} and GC_{P1-EtOH-1}; (b) GC_{P1-PhCN-2}, GC_{P1-DMF-2}, GC_{P1-DMS0-2}, GC_{P1-CH3CN-2}, GC_{P1-THF-2}, GC_{P1-DCM-2} and GC_{P1-EtOH-2} and (c) on GC_{P1-PhCN-3}, GC_{P1-DMF-3}, GC_{P1-DCM-3}, GC_{P1-DCM-3} and GC_{P1-EtOH-3}. Electrolyte solution: 0.1 mol L⁻¹ KCl. v = 5 mV s⁻¹.

Fig. S-6. Anodic polarization curves recorded on GC₀, GC_{CB}, GC_{P1} and GC_{P1-CB} in the following electrolyte solutions: (a) 0.1 mol L^{-1} H₂SO₄, (b) 0.1 mol L^{-1} KCl and (c) 1 mol L^{-1} KOH. v = 5 mV s⁻¹.

Fig. S-7. Raman spectra recorded on GC_{P1-CB} before an anodic stability experiment performed in 1 mol L^{-1} KOH solution ($GC_{P1-CB}a$) and after the experiment ($GC_{P1-CB}b$).

TARANU

TABLES

17	BEE 5 1. The HER de	array of Geplech and	d of other porph	yim bused cleenodes	
	Catalyst @substrate	Environment j	η_{HER} / mV at = -10 mA cm ⁻²	Tafel slope, mV dec ⁻¹	Ref.
	Zn-TPP/G @Cu foil ^a	0.5 mol L ⁻¹ H ₂ SO ₄	~ 480 ^b	-	5
	Zn-TAPP/G @Cu foil °	0.5 mol L ⁻¹ H ₂ SO ₄	~ 480 ^b		5
	Zn-TPyP/G @Cu foil ^d	0.5 mol L ⁻¹ H ₂ SO ₄	~ 560 ^b		5
	ZnTAPP-NA @GC ^e	1 mol L ⁻¹ KOH	546	121	6
	CoTAPP-NA @GC ^f	1 mol L ⁻¹ KOH	470	110	6
	CoTPP-SD @CFP ^g	1 mol L ⁻¹ KOH	475	-	7
	CoCOP @CFP ^h	1 mol L ⁻¹ KOH	310	161	7
	CoTCPP @FTO/Ag ⁱ	$0.5 \text{ mol } L^{-1} H_2 SO_4$	666	264	8
	CoTCPP polymer @FTO/Ag ^j	0.5 mol L ⁻¹ H ₂ SO ₄	475	197	8
	CoTMPyP/ERGO @GC ^k	0.1 mol L ⁻¹ KOH	347 ¹	99	9
	CoTMPyP/ERGO @GC	1 mol L ⁻¹ KOH	315 ¹	96	9
	Co-2DP @Ti foil ^m	1 mol L ⁻¹ KOH	367 ¹	126	10
	CoP-2ph-CMP-800 @GC ⁿ	1 mol L ⁻¹ KOH	360	121	11
	CoP-3ph-CMP-800 @GC °	1 mol L ⁻¹ KOH	380	-	11
	CoP-4ph-CMP-800 @GC ^p	1 mol L ⁻¹ KOH	440	-	11
	G _{ZnP-DMF-1} ^q	1 mol L ⁻¹ KOH	520	150	2
	Porphvlar-based ink @carbon paper ^r	1 mol L ⁻¹ PBS	~ 770 ^s	227	12
	GCB-PZn ^t	0.1 mol L ⁻¹ KCl	1020	249	3
	Fe-porphyrin polymer @carbon paper ^u	1 mol L ⁻¹ KOH	678	363	13
	Co-porphyrin polymer @carbon paper v	^r 1 mol L ⁻¹ KOH	437	195	13
	Ni-porphyrin polymer @carbon paper **	1 mol L ⁻¹ KOH	644	345	13

TABLE S-I. The HER activity of GC_{P1-CB} and of other porphyrin-based electrodes

SUPPLEMENTARY MATERIAL

Cu-porphyrin polymer @carbon paper x	^r 1 mol L ⁻¹ KOH	436	236	13
Pt-TAPP/G @Cu foil ^y	0.5 mol L ⁻¹ H ₂ SO ₄	~ 550	-	5
2H-TAPP/G @Cu foil ^z	0.5 mol L ⁻¹ H ₂ SO ₄	600 ^{aa}	-	5
Ni-TAPP/G @Cu foil ^{ab}	0.5 mol L ⁻¹ H ₂ SO ₄	600 ^s	-	5
G _{P2-DMF} ac	0.5 mol L ⁻¹ H ₂ SO ₄	108	205	14
$G_{P4-NiPh-THF}$ ad	1 mol L ⁻¹ KOH	430	140	15
[ERGO/CoTMPyP] ₇ / PDDA/4-ABA@GC ^{av}	_e 0.1 mol L ⁻¹ KOH	474 ¹	116	16
GC _{P1-CB}	1 mol L ⁻¹ KOH	770	135	This work

^a Zn-TPP = 5,10,15,20-tetraphenyl-21H,23H-porphine on single-layer graphene; ^b at -3 mA cm⁻²; ^c Zn-TAPP = 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine on singlelayer graphene; ^d Zn-TPyP = 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphine on singlelayer graphene; ^e ZnTAPP-NA = Zn(II) 5,10,15,20-tetra(4-aminophenyl)-21H,23Hporphyrin - ferrocene-1,1'-dicarbaldehyde; $^{\circ}$ CoTAPP-NA = Co(II) 5,10,15,20-tetra(4aminophenyl)-21H,23H-porphyrin - ferrocene-1,1'-dicarbaldehyde; ^g CoTPP-SD@CFP = Co(II) 5,10,15,20-tetrakis(4-aminophenyl)porphyrin – salicylaldehyde@carbon fibre paper; ^h CoCOP = Co(II) 5,10,15,20-tetrakis(4-aminophenyl)porphyrin-based covalent organic polymer; ⁱ CoTCPP = Co(II) meso-tetra(4-carboxyphenyl)porphyrin; ^j CoTCPP polymer = crystalline Co(II) meso-tetra(4-carboxyphenyl)porphyrin-based polymeric system; ^k CoTMPyP/ERGO = tetrakis(N-methylpyridyl)porphyrinato cobalt / electrochemically reduced graphene oxide; ¹ at -1 mA cm⁻²; ^m Co-2DP = multilayer 2D polymer based on Co(II) 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphyrin and 2,5dihydroxyterephthalaldehyde; " CoP-2ph-CMP-800, ° CoP-3ph-CMP-800 and P CoP-4ph-CMP-800 = conjugated mesoporous polymer based on Co-porphyrins and pyrolyzed at 800 °C; [ERGO/CoTMPyP]₇/PDDA/4-ABA@GC = multilayer films containing tetrakis(N-methylpyridyl)porphyrinato cobalt, on treated glassy carbon electrode; ^q G_{ZnP-} $_{DMF,1} = Zn(II) 5,10,15,20$ -tetrakis(4-pyridyl)-porphyrin drop-casted from DMF in one layer on graphite; ^r Porphylar = organic polymer obtained from the condensation of terephthaloyl chloride and 5,10,15,20-tetrakis(4-aminophenyl)porphyrin; s at -7 mA cm-2; t $G_{CB-PZn} = Zn(II)$ 5-(4-pyridyl)-10,15,20-tris(4-phenoxyphenyl)-porphyrin and Carbon Black drop-casted as catalyst ink on graphite; ^{u,v,w,x} Fe-porphyrin polymer, Co-porphyrin polymer, Ni-porphyrin polymer, Cu-porphyrin polymer = organic polymers obtained from the polymerization reaction of poly(p-phenylene terephtalamide) with 5,10,15,20tetrakis(4-aminophenyl)porphyrin metalated with Fe, Co, Ni and Cu; ^y Pt-TAPP/G = Pt(II) 5,10,15,20-tetrakis-(4-aminophenyl)-21H,23H-porphine on single-layer graphene; ^z 2H-TAPP/G = 5,10,15,20-tetrakis-(4-aminophenyl)-21H,23H-porphine on single-layer graphene; ^{aa} at -9 mA cm⁻²; ^{ab} Ni-TAPP/G = Ni(II) 5,10,15,20-tetrakis-(4-aminophenyl)-21H,23H-porphine on single-layer graphene; ^{ac} $G_{P2-DMF} = Pt(II) 5-(3-hydroxyphenyl)-$ 10,15,20-tris(3-methoxyphenyl)-porphyrin drop-casted on graphite substrate from N,Ndimethylformamide; ^{ad} G_{P4-NiPh-THF} = graphite substrate modified with suspension of nickel phosphite in solution of 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin dissolved in tetrahydrofuran; ae [ERGO@CoTMPyP]7/PDDA/4-ABA@GC = multilayer films containing tetrakis(N-methylpyridyl)porphyrinato cobalt, on treated glassy carbon electrode.

TARANU

REFERENCES

- 1. B.-O. Taranu, E. Fagadar-Cosma, *Processes* **10** (2022) 1 (https://doi.org/10.3390/pr10030611)
- B.-O. Taranu, E. Fagadar-Cosma, Nanomaterials-Basel 12 (2022) 1 (<u>https://doi.org/10.3390/nano12213788</u>)
- B.-O. Taranu, S. F. Rus, E. Fagadar-Cosma, *Coatings* 14 (2024) 1 (<u>https://doi.org/10.3390/coatings14081048</u>)
- B. O. Taranu, S. D. Novaconi, M. Ivanovici, J. N. Goncalves, F. S. Rus, *Appl. Sci.-Basel* 12 (2022) 1 (<u>https://doi.org/10.3390/app12136821</u>)
- S. Seo, K. Lee, M. Min, Y. Cho, M. Kim, H. Lee, *Nanoscale* 9 (2017) 3969 (<u>https://doi.org/10.1039/C6NR09428G</u>)
- G. Cai, L. Zeng, L. He, S. Sun, Y. Tong, J. Zhang, *Chem.-Asian J.* 15 (2020) 1963 (<u>https://doi.org/10.1002/asia.202000083</u>)
- A. Wang, L. Cheng, W. Zhao, X. Shen, W. Zhu, J. Colloid Interf. Sci. 579 (2020) 598 (<u>10.1016/j.jcis.2020.06.109</u>)
- Y. Wu, J. M. Veleta, D. Tang, A. D. Price, C. E. Botez, D. Villagran, *Dalton T.* 47 (2018) 8801 (<u>https://doi.org/10.1039/C8DT00302E</u>)
- J. Ma, L. Liu, Q. Chen, M. Yang, D. Wang, Z. Tong, Z. Chen, *Appl. Surf. Sci.* 399 (2017) 535 (<u>https://doi.org/10.1016/j.apsusc.2016.12.070</u>)
- H. Sahabudeen, H. Qi, B. A. Glatz, D. Tranca, R. Dong, Y. Hou, T. Zhang, C. Kuttner, T. Lehnert, G. Seifert, U. Kaiser, A. Fery, Z. Zheng, X. Feng, *Nat. Commun.* 7 (2016) 1 (https://doi.org/10.1038/ncomms13461)
- 11. H. Jia, Y. Yao, Y. Gao, D. Lu, P. Du, *Chem. Commun.* **52** (2016) 13483 (https://doi.org/10.1039/C6CC06972J)
- 12. Y. Ge, Z. Lyu, M. Marcos-Hernandez, D. Villagran, *Chem. Sci.* **13** (2022) 8597 (https://doi.org/10.1039/D2SC01250B)
- 13. N. Ocuane, Y. Ge, C. Sandoval-Pauker, D. Villagran, *Dalton T.* **53** (2024) 2306 (https://doi.org/10.1039/D3DT03371F)
- I. Fratilescu, A. Lascu, B. O. Taranu, C. Epuran, M. Birdeanu, A.-M. Macsim, E. Tanasa, E. Vasile, E. Fagadar-Cosma, *Nanomaterials-Basel* 12 (2022) 1 (https://doi.org/10.3390/nano12111930)
- 15. B.-O. Taranu, E. Fagadar-Cosma, P. Sfirloaga, M. Poienar, *Energies* **16** (2023) 1 (https://doi.org/10.3390/en16031212)
- D. Huang, J. Lu, S. Li, Y. Luo, C. Zhao, B. Hu, M. Wang, Y. Shen, *Langmuir* 30 (2014) 6990 (<u>https://doi.org/10.1021/la501052m</u>).