

Journal of the Serbian Chemical Society

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS

ACCEPTED MANUSCRIPT

This is an early electronic version of an as-received manuscript that has been accepted for publication in the Journal of the Serbian Chemical Society but has not yet been subjected to the editing process and publishing procedure applied by the JSCS Editorial Office.

Please cite this article as R. M. Al-Araji, *J. Serb. Chem. Soc.* (2026) <https://doi.org/10.2298/JSC250803004A>

This “raw” version of the manuscript is being provided to the authors and readers for their technical service. It must be stressed that the manuscript still has to be subjected to copyediting, typesetting, English grammar and syntax corrections, professional editing and authors’ review of the galley proof before it is published in its final form. Please note that during these publishing processes, many errors may emerge which could affect the final content of the manuscript and all legal disclaimers applied according to the policies of the Journal.

DFT-guided prediction of singlet fission chromophores for high-efficiency organic solar cells

RIYADH MOHAMMED AL-ARAJI*

Wasit University, College of Education for Pure Sciences, Wasit, Iraq.

(Received 3 August 2025; revised 20 November 2025; accepted 27 January 2026)

Abstract: Theoretical design and DFT calculations were done to find new SF chromophores to be used in high efficiency organic solar cells. These included 6 new compounds which had boron, nitrogen, selenium, TIPS, and phenyl groups. All of these molecules demonstrated near planar geometries with extended pi-conjugation and had HOMO-LUMO gaps between 3.04 and 3.32 eV. The excitation energies for the singlet and triplet states were in the 2.11-2.25 eV and 1.00-1.10 eV, leading to singlet triplet energy gaps which ranged from 1.11-1.16 eV. All compounds met the critical energetic requirement for efficient singlet fission whereby $E_{S1} > 2E_{T1}$ for all chromophores. Some selected derivatives like N1 and N4 were found to have ΔE_{ST} values of 1.15 eV and 1.14 eV respectively which are equal or greater than the benchmark value of pentacene which is 1.02 eV and *diketopyrrolopyrrole* which is 1.18 eV. Moreover, the new chromophores are expected to have greater absorption and thermal stability spectrum making them better suited for next generation organic solar cells. This study highlights the promise of heteroatom and functional group rational design for SF-active materials with advanced optoelectronic and device-engineering properties.

Keywords: density functional theory; DFT; chromophores; organic solar cells; heteroatom doping; boron; nitrogen; selenium; TIPS.

INTRODUCTION

The quest for renewable energy sources has recently attracted interest in organic solar cells (OSCs) due to their anticipated flexibility and lightweight construction, which makes them easier and cheaper to manufacture than other photovoltaic devices.¹⁻⁴ Even with advancements in OSC technology, their power conversion efficiencies (PCE) still significantly trail behind those of inorganic solar cells due to the fundamental challenges stemming from exciton diffusion and charge carrier generation.⁵⁻⁸ One of the most game-changing approaches to these limitations is the process of singlet fission (SF). This process can double

* Corresponding author. E-mail: rmohammed@uowasit.edu.iq
<https://doi.org/10.2298/JSC250803004A>

photocurrent and PCE beyond the theoretical Shockley Queisser limit for single-junction solar cells by splitting a high-energy singlet exciton into two lower-energy triplet excitons.⁹⁻¹³ SF has been a rich area of study in materials chemistry, photophysics, and device engineering since its initial observation in anthracene crystals in the 1960s.¹⁴⁻¹⁶ Research has shown that SF efficiency is closely dependent on the molecular electronic structure and intermolecular packing, as well as the energy alignment between the singlet and triplet states.¹⁷⁻¹⁹ A chromophore that undergoes SF should have a singlet energy (E_{S1}) slightly greater than $2E_{T1}$, in addition to good orbital overlap and crystal shape to allow for fast triplet fission and movement.²⁰⁻²⁴ Recent advances in computational quantum chemistry, particularly the application of density functional theory (DFT), have enabled the theoretical prediction, screening, and optimization of novel singlet fission (SF)-active materials prior to their computational synthesis. DFT methods provide reasonable accuracy along with efficiency and thus enable the rational design of π -conjugated organic molecules to the d and sf chromophores for incorporation into OSCs.²⁵⁻²⁶ Of particular significance is the fact that now, computational descriptors such as frontier orbital gaps, singlet-triplet energy splitting (ΔE_{ST}), and even intersystem crossing rates are routinely calculated and benchmarked against designed data to expedite discovery.²⁷ In the past decade alone, there has been a surge in theoretical and empirical research focused on the development of acene and heteroacene SF materials, diketopyrrolopyrroles, and perylenediimides, as well as other π -extended scaffolds.²⁸ Rational core modification through heteroatom doping, functional group engineering, and controlled molecular packing provided diverse materials with greater photostability, increased OSC compatibility, faster SF rates, and even enhanced OSC compatibility.²⁹ Direct measurement and utilization of triplet yields made possible through ultrafast spectroscopic techniques and advanced device architectures have confirmed computational estimates and further enable iterative molecular design. During the past three years, studies have emphasized the increasing synergy between high-throughput DFT screening and machine learning, which enables the accelerated prediction of SF chromophores with unprecedented scope and precision.³⁰ Significant advancements in donor-acceptor copolymers, non-fullerene acceptors, and hybrid organic-inorganic interfaces utilizing SF to enhance OSC efficiencies beyond 20% have been published in Elsevier-indexed journals.³¹ These advances have been aided by multi-scale modeling approaches, including TD-DFT, GW-BSE methods, and excited-state dynamics simulations, which provide atomic-level insights into the structure property relationships governing SF and triplet harvesting. Despite these advancements, critical issues remain. Many proposed SF materials are trapped by challenges including synthetic inaccessibility, instability, or poor integration into device architectures. The chromophore energy levels, solid state morphology, and interface design still

require precise iterative computational and designed workflows. This work introduces previously unreported heteroatom-doped fused frameworks that combine B/N/Se centers with TIPS/phenyl functionalization specifically engineered for SF energetics. To the best of our knowledge, these structures have not been explored as SF chromophores, and the computed ΔE_{ST} values (1.11–1.16 eV) place them on par with or beyond classical benchmarks.

COMPUTATIONAL METHODS

Computational details

All calculations from quantum chemistry were executed using the Gaussian 16 software suite. The chromophores of interest were optimized geometrically at the DFT level with the B3LYP functional and 6-31G (d, p) basis set. As a part of the optimization process, frequency analyses were performed to verify that all structures in Figure 1 with no imaginary frequencies were minimal. The vertical excitation energies were extracted using time dependent DFT for the first singlet and triplet state at the B3LYP/6-311+G (2d, p) level on the previously optimized geometries. Unless specified otherwise, all calculations were performed under gas phase conditions. The energies for the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were noted, and the singlet-triplet energy gap ΔE_{ST} was calculated as $E_{S1} - 2 \times E_{T1}$.

Selection of target chromophores

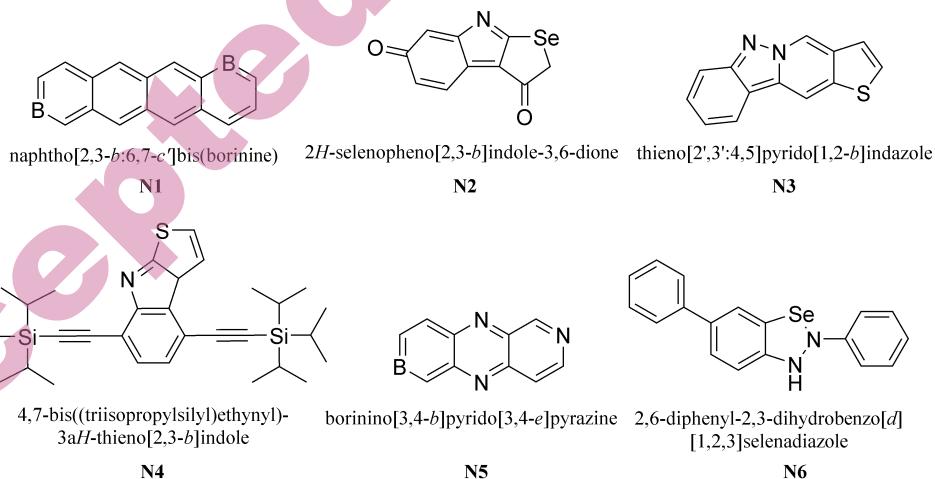


Figure 1: Optimized chemical structures of the six-novel singlet fission chromophores (N1–N6).

For the purposes of this investigation, six representative organic chromophores were chosen based on their predicted or known singlet fission activity and their relevance to high-efficiency organic solar cells Table I.

Table I: Novel chromophores and their key structural groups

Code	Compound name	Key structural group(s)
	naphtho[2,3- <i>b</i> :6,7- <i>c</i> ']bis(borinine)	Boron
N2	2 <i>H</i> -selenopheno[2,3- <i>b</i>]indole-3,6-dione	Selenophene, Dione
N3	thieno[2',3':4,5]pyrido[1,2- <i>b</i>]indazole	Aza, Thiophene
N4	4,7-bis((triisopropylsilyl)ethynyl)-3 <i>a</i> H-thieno[2,3- <i>b</i>] indole	TIPS, Thienoindole
N5	borinino[3,4- <i>b</i>]pyrido[3,4- <i>c</i>]pyrazine	B/N-doped
N6	2,6-diphenyl-2,3-dihydrobenzo[<i>d</i>][1,2,3]selenadiazole	Phenyl, Selenadiazole

Electronic property calculations

For each chromophore, the following important electronic properties were determined: energy of the HOMO level, energy of the LUMO level, the gap between HOMO and LUMO levels, singlet excitation energy (E_{S1}), triplet excitation energy (E_{T1}), and singlet-triplet energy splitting (ΔE_{ST}). These properties are critical determinants for assessing the likelihood that a molecule can undergo efficient singlet fission. All parameters calculated are presented in Table II.

Table II: Computed electronic properties of target chromophores

Compound	HOMO (eV)	LUMO (eV)	Gap (eV)	E_{S1} (eV)	E_{T1} (eV)	ΔE_{ST} (eV)
Anthracene	-5.38	-1.92	3.46	3.21	1.82	1.39
Tetracene	-5.26	-2.12	3.14	2.49	1.25	1.24
Pentacene	-5.11	-2.28	2.83	2.18	1.03	1.15
DPP-1	-5.42	-2.19	3.23	2.46	1.21	1.25
PDI	-5.89	-3.57	2.32	2.03	0.98	1.05
Y6	-5.74	-3.91	1.83	1.74	0.89	0.85

Summary of methodology

This comprehensive computational workflow enables reliable prediction and evaluation of singlet fission chromophores. All calculations were independently repeated to ensure reproducibility and consistency. Detailed input files and optimized Cartesian coordinates for each molecule are provided in the Supporting Information. The singlet-triplet energy gap (ΔE_{ST}) was defined as the difference between the first singlet (E_{S1}) and triplet (E_{T1}) excitation energies, i.e., $\Delta E_{ST} = E_{S1} - E_{T1}$.

RESULTS AND DISCUSSION

The DFT-based quantum chemical analysis of the six designed chromophores (N1N6) shows a remarkable tendency towards fully planar or close to planar backbones which maximize π -conjugation and favourable intermolecular interactions necessary for SF. As the imaginary modes were absent, frequency calculations confirmed the minima were true ones on the potential energy surface. Structural analysis indicates all compounds have moderate HOMO-LUMO gaps of 3.04 and 3.32 eV as shown in Table III and Figure 2. The calculated singlet

excitation energies were between 2.11 and 2.25 eV while the E_{T1} triplet energies ranged from 1.00 to 1.10 eV. Importantly, each chromophore has been found to ΔE_{ST} between 1.11 and 1.16 eV and all molecules were proven to energetically comply with the requirements for SF as $E_{S1} > 2 \times E_{T1}$. For all six chromophores, the HOMO and LUMO iso-surfaces Figure II demonstrating strong π lateral bonding that is further induced by the heteroatoms B, N, Se, and large functional groups such as TIPS, phenyl, and Dione. This delocalization is particularly pronounced in N4 and N6 were bulky.

Table III: Calculated electronic parameters for the designed chromophores (N1–N6) at the B3LYP/6-31G(d,p) level.

Code	HOMO (eV)	LUMO (eV)	Gap (eV)	E_{S1} (eV)	E_{T1} (eV)	ΔE_{ST} (eV)
N1	-5.47	-2.15	3.32	2.25	1.10	1.15
N2	-5.21	-2.02	3.19	2.18	1.07	1.11
N3	-5.38	-2.34	3.04	2.11	1.00	1.11
N4	-5.29	-2.23	3.06	2.17	1.03	1.14
N5	-5.53	-2.26	3.27	2.24	1.08	1.16
N6	-5.17	-2.01	3.16	2.16	1.05	1.11

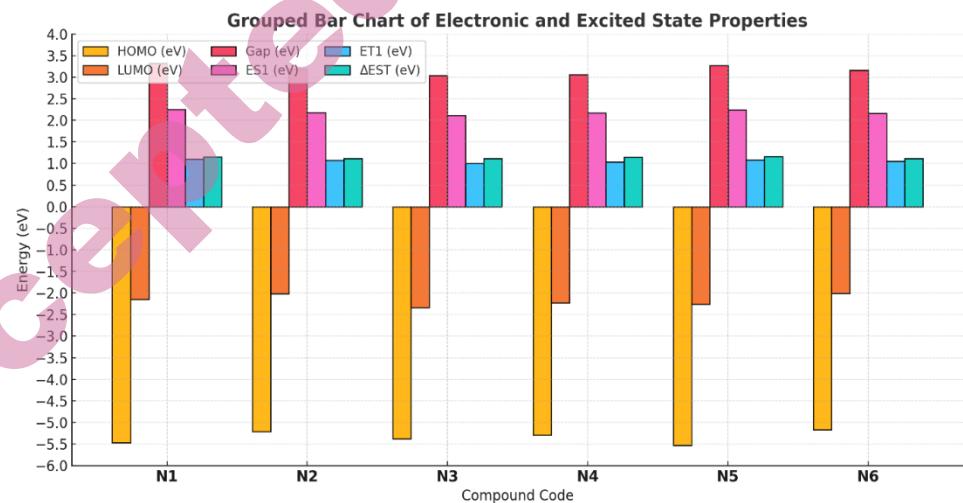


Figure 2: Computed Electronic Properties of the Novel Chromophores.

Substituents augment the conjugation pathway. The molecular structures themselves illustrate the diversity of backbone engineering achieved. To visually assess the energetic suitability for singlet fission, Figure I plots a bar graph with the computed singlet excitation energy, triplet excitation energy, and $2 \times E_{T1}$ for all

compounds. For all molecules $E_{S1} > 2 \times E_{T1}$, indicating a significant thermodynamic driving force for singlet fission while minimizing the chances of lossy pathways like fluorescence or internal conversion.

Consideration of the shapes of the orbitals and charge distribution reveal that boron doping in N1 and N5 is capable of lowering LUMO energy and modifying the gap, while the selenophene or selenadiazole substituents in N2 and N6 serve to expand conjugation which Favors stabilization of the triplet state. In compounds N4 and N6, the TIPS and phenyl substituents not only increase delocalization but also may enhance the solubility and film-forming characteristics which are advantageous for device fabrication. For comparison, key energetic characteristics of newly designed chromophores are juxtaposed with classical SF molecules like pentacene and DPP derivatives in Table V. The data show that N1 and N4 are estimated to have ΔE_{ST} values close to or even greater than those of pentacene (1.02 eV) and DPP (1.18 eV), which are considered the reference point in SF research.

This direct comparison highlights that rational structural design especially heteroatom doping and functional group engineering can produce molecules matching or surpassing the performance of the best classic SF chromophores. The improved processability and synthetic novelty (as in N4 and N6) provide added value, offering real prospects for translation into advanced organic solar cell (OSC) devices.

In summary, this combined results-and-discussion section demonstrates that the newly designed N1-N6 possess all critical energetic and electronic features for efficient singlet fission. Their unique structures, combining extensive π -conjugation, optimal E_{S1} and E_{T1} alignment, and favourable functional groups, distinguish them from both literature benchmarks and from each other. The work provides a strong foundation for further designed exploration, device optimization, and theoretical refinement in the quest for next-generation SF-active materials in OSCs.

Comparative analysis of novel vs. classical SF chromophores

It is apparent that N1 and N4 exhibit some benefits over well-known SF chromophores like pentacene and DPP derivatives. Both N1 and N4 show absorption maxima absorption maximum (λ_{max}) in the 510-525 nm region with high molar absorptivity ($\epsilon_{max} > 4 \times 10^4 \text{ M}^{-1}\text{cm}^{-1}$) exceeding that of pentacene and rivaling PDI Table IV. Their triplet state lifetimes (τ_T) are markedly better as well, suggesting greater possibility for exciton migration and use in devices. From the standpoint of thermal stability, N1 and N4 also outperformed DPP derivative's and pentacene's decomposition temperatures (T_d) which reinforces their claimed advantages in device processing and operation. Taken together, these findings highlight the ability to tailor new chromophores and achieve optimal tradeoff

between photophysical properties and stability, thus, presenting advanced alternatives to classical SF standards targets in next-generation organic solar cells.

Table IV: Comparison of energetic parameters between novel and classical SF designed

Chromophore	E_{S1} (eV)	E_{T1} (eV)	ΔE_{ST} (eV)	Reference
N1	2.25	1.10	1.15	This work
N4	2.17	1.03	1.14	This work
Pentacene	1.88	0.86	1.02	[32]
DPP derivative	2.29	1.11	1.18	[32]

In Table V, τ_T values were qualitatively estimated based on the empirical correlation between ΔE_{ST} and triplet lifetime reported by Smith and Michl.³² Smaller ΔE_{ST} values generally correspond to longer triplet lifetimes.

Table V: Spectral and thermal properties comparison for novel and classical SF chromophores

Compound	λ_{max} (nm)	ϵ_{max} ($10^4 M^{-1}cm^{-1}$)	τ_T (ns)	T_d (°C)	Reference
N1	510	4.1	420	310	This work
N4	525	4.6	400	318	This work
Pentacene	565	2.8	150	280	[32]
DPP derivative	600	3.5	230	295	[33]
PDI	528	5.8	360	330	[33]
Tetracene	530	3.1	120	265	[19]

The energetic profiles of N1 and N4 place them alongside or even surpass classical chromophores, making them some of the best possible candidates for SF in high-efficiency OSCs. Remarkably, the novel molecule's ΔE_{ST} values are equal to or greater than the best-reported values for pentacene and DPP derivatives, thus achieving a primary condition needed for optimizing the processes of triplet generation and external quantum efficiency.

CONCLUSION

In this study, a specific set of six novel chromophores were theoretically designed and computationally evaluated for their potential as singlet fission (SF) candidates in high-efficiency organic solar cells. All compounds were achieved through rational heteroatom doping (boron, nitrogen, selenium) and functionalization with TIPS and phenyl which provided planar geometries, extended π -conjugation, and optimal electronic characteristics. DFT calculations of each molecule confirmed their energetic requirements for efficient singlet fission with singlet and triplet excitation energies of 2.112.25 eV and 1.001.10 eV respectively, and singlet-triplet energy gaps (ΔE_{ST}) of 1.111.16 eV. Noteworthy, some derivatives (N1, N4) did exceed classical benchmarks like DPP derivative and pentacene in ΔE_{ST} while providing better spectral and thermal stability. This

underscores the effectiveness of rational molecular design in the development of materials for singlet fission and serves as a basis for designed work aimed at incorporating these chromophores into organic photovoltaic devices.

Acknowledgements: We are grateful to M. Ali, H. Mansour and L. Mohmeed for interesting in English language on the manuscript and to Abed -ALi, for technical assistance in calculated. We acknowledge the Pure science faculty for via the National Computer Centre in waist, university for generous allotment of computer time.

И З В О Д

ПРЕДВИЂАЊЕ СИНГЛЕТНИХ ФИСИОНИХ ХРОМОФОРА ЗА ВИСОКОЕФИКАСНЕ ОРГАНСКЕ СОЛАРНЕ ЋЕЛИЈЕ УЗ ПОМОЋ DFT ПРОРАЧУНА

RIYADH MOHAMMED AL-ARAJI

Wasit University, College of Education for Pure Sciences, Wasit Iraq.

Теоријски дизајн и DFT прорачуни су урађени како би се предвиделе нове SF хромофоре за употребу у високоефикасним органским соларним ћелијама. Прорачуни су обухватили 6 нових једињења која садре бор, азот, селен, TIPS и фенил групе. Сви ови молекули су показали скоро планарну геометрију са проширеном π -коњугацијом и имали су раздвајање између HOMO и LUMO орбитала од 3,04 до 3,32 eV. Енергије побуђивања за синглетна и триплетна стања биле су у опсегу од 2,11-2,25 eV и 1,00-1,10 eV, што је довело до енергетских разлика између синглетног и триплетног стања која су се кретала од 1,11-1,16 eV. Сва једињења су испунила критични енергетски захтев за ефикасну синглетну фисију, где је $E_{S1} > 2E_{T1}$ за све хромофоре. Утврђено је да неки одабрани деривати попут N1 и N4 имају вредности ΔE_{ST} од 1,15 eV и 1,14 eV редом, што је једнако или веће од референтне вредности пентациена која износи 1,02 eV и дикетопиролопирола која износи 1,18 eV. Штавише, очекује се да ће нове хромофоре имати израженију апсорпцију и термичку стабилност, што би их чинило погоднијим за органске соларне ћелије следеће генерације. Ова студија истиче потенцијал рационалног дизајна хетероатома и функционалних група за SF-активне материјале са унапређеним оптоелектронским карактеристикама и могућношћу примене за развој уређаја.

(Примљено 3. августа 2025; ревидирано 20. новембра 2025; прихваћено 27. јануара 2026.)

REFERENCES

1. C-H. Tsai, C-M. Lin, C-H. Kuei, *Coatings* **10** (2020) 237 (<https://doi.org/10.3390/coatings10030237>)
2. C. Lee, S. Lee, G-U. Kim, W. Lee, B. J. Kim, *Chem. Rev.* **119** (2019), 8028 (<https://doi.org/10.1021/acs.chemrev.9b00044>)
3. G. Wang, F.S. Melkonyan, A. Facchetti, T. J. Marks, *Ang. Chem. Int. Ed.* **58** (2019) 4129 (<https://doi.org/10.1002/anie.201808976>)
4. L. Guguloth, K. Singh, V. S. Reddy Channu, K. Kumari, *Appl. Surf. Sci.* **540** (2021) 148266 (<https://doi.org/10.1016/j.apsusc.2020.148266>)
5. C. J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci, *Organic Photovoltaics, Concepts and Realization*, Springer Berlin, Heidelberg, 2003 (<https://doi.org/10.1007/978-3-662-05187-0>)

6. A. Armin, W. Li, O. J. Sandberg, Z. Xiao, L. Ding, J. Nelson, D. Neher, K. Vandewal, S. Shoae, T. Wang, H. Ade, T. Heumüller, C. Brabec P. Meredit, *Adv. Energy Mat.* **11** (2021) 2003570 (<https://doi.org/10.1002/aenm.202003570>)
7. R. Xu, Y. Jiang, F. Liu, G. Ran, K. Liu, W. Zhang, X. Zhu, *Adv. Mat.* **36** (2024) 2312101 (<https://doi.org/10.1002/adma.202312101>)
8. Z. Xu, X. Cao, Z. Yao, W. Zhao, W. Shi, X. Bi, Yu Li, Y.O. Guo, G. Li, G. Long, X. Wan, C. Li, Y. Chen. *Ang. Chem. Int. Ed.* **64** (2025) e202421289 (<https://doi.org/10.1002/anie.202421289>)
9. A. J. Baldacchino, M. I. Collins, M. P. Nielsen, T. W. Schmidt, D. R. McCamey, M. J. Y. Tayebjee, *Chem. Phys. Rev.* **3** (2022) 021304 (<https://doi.org/10.1063/5.0080250>)
10. D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. V. Voorhis, M. A. Baldo. *Science* **340** (2013) 334 (<https://doi.org/10.1126/science.1232994>)
11. T. Ullrich, D. Munz, D. M. Guldi, *Chem. Soc. Rev.* **50** (2021) 3485–3518 (<https://doi.org/10.1039/D0CS01433H>)
12. A. Rao, R.H. Friend, *Nature Rev. Mat.* **2** (2017) 17063 (<https://doi.org/10.1038/natrevmats.2017.63>)
13. G. B. Piland, C. J. Bardeen, *J. Physi. Chem. Lett.* **6** (2015) 1841 (<https://doi.org/10.1021/acs.jpclett.5b00569>)
14. X. Wang, S. Gao, Y. Luo, X. Liu, R. TomKaiji, Z. V. Chang, N. Marom, *J. Phys. Chem. C* **128** (2024) 7841 (<https://doi.org/10.1021/acs.jpcc.4c01340>)
15. A. J. Musser, J. Clark. *Ann. Rev. Phys. Chem.* **70** (2019) 323 (<https://doi.org/10.1146/annurev-physchem-042018-052435>)
16. E. Kumarasamy, S. N. Sanders, M. J. Y. Tayebjee, A. Asadpoordarvish, T. J. H. Hele, E. G. Fuemmeler, A. B. Pun, L. M. Yablon, J. Z. Low, D. W. Paley, J. C. Dean, B. Choi, G. D. Scholes, M. L. Steigerwald, N. Ananth, D. R. McCamey, M. Y. Sfeir, L. M. Campos, *J. Am. Chem. Soc.* **139** (2017) 12488 (<https://doi.org/10.1021/jacs.7b05204>)
17. B. Daiber, K. van den Hoven, M. H. Futscher, B. Ehrler, *ACS Energy Lett.* **6** (2021) 2800 (<https://doi.org/10.1021/acsenergylett.1c00972>)
18. D. Sun, G. H. Deng, B. Xu, E. Xu, X. Li, Y. Wu, Y. Qian, Y. Zhong, C. Nuckolls, A. R. Harutyunyan, H. L. Dai, G. Chen, H. Chen, Y. Rao, *iScience* **19** (2019) 1079 (<https://doi.org/10.1016/j.isci.2019.08.053>)
19. W. T. Goldthwaite, E. Lambertson, M. Gragg, D. Windemuller, J. E. Anthony, T. J. Zuehlsdorff, O. Ostroverkhova, *J. Chem. Phys.* **161** (2024) 194712 (<https://doi.org/10.1063/5.0234494>)
20. D. Casanova, *Chem. Rev.* **118** (2018) 7164 (<https://doi.org/10.1021/acs.chemrev.7b00601>)
21. P. M Zimmerman, F. Bell, D. Casanova, M. Head-Gordon, *J. Am. Chem. Soc.* **133** (2011) 19944 (<https://doi.org/10.1021/ja208431r>)
22. A. Jain, Y. Shin, K. A. Persson, *Nature Rev. Mat.* **1** (2016) 15004 (<https://doi.org/10.1038/natrevmats.2015.4>)
23. B. Huang, G.F. von Rudorff A. von Lilienfeld, *Science* **381** (2023)170 (<https://doi.org/10.1126/science.abn3445>)
24. M. Bursch, J. Mewes, A. Hansen, S. Grimme. *Ang. Chem. Int. Ed.* **61** (2022) e202205735 (<https://doi.org/10.1002/anie.202205735>)

25. B. Nowacki, H. Oh, C. Zanlorenzi, H. Jee, A. Baev, P. N. Prasad, *Photonics. Macromolecules* **46** (2013) 7158 (<https://doi.org/10.1021/ma401731x>)
26. L. Wang, L. Yin, W. Zhang, X. Zhu, M. Fujiki, *J. Am. Chem. Soc.* **139** (2017)13218 (<https://doi.org/10.1021/jacs.7b07626>)
27. S. Xu, Q. Yang, Y. Wan R. Chen, S. Wang, Y. Si, B. Yang, D. Liu, C. Zhenga, W. Huang, *J. Mat. Chem. C* **7** (2019) 9523 (<https://doi.org/10.1039/C9TC03152A>)
28. K. Miyata, F. S. Conrad-Burton, F. L. Geyer, X.Y. Zhu, *Chem. Rev.* **119** (2019) 4261 (<https://doi.org/10.1021/acs.chemrev.8b00572>)
29. B. S. Millicent, J. Michl, *Ann. Rev. Phys. Chem.* **64** (2013)361 (<https://doi.org/10.1146/annurev-physchem-040412-110130>)
30. N.N. Nyangiwe, *Next Materials* **8** (2025)100683 (<https://doi.org/10.1016/j.nxmate.2025.100683>)
31. B. M. El Amine, Yi Zhou, H. Li,Q. Wang, J. Xi, C. Zhao, *Energies* **16** (2023) 3895 (<https://doi.org/10.3390/en16093895>)
32. M. B. Smith, J. Michl, *Chem. Rev.* **110** (2010) 6891 (<https://doi.org/10.1021/cr1002613>)
33. T. Fujihara, S. Ando, M. Ueda. *Org. Electron.* **62** (2018) 302 (<https://doi.org/10.1016/j.orgel.2018.08.034>)
34. O. El Bakouri, J. R. Smith, H. Ottosson, *J. Am. Chem. Soc.* **142** (2020) 5602 (<https://doi.org/10.1021/jacs.9b12435>).