


JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 81 (6) S188 (2016)

SUPPLEMENTARY MATERIAL TO Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

XIAN-BO ZHU^{1,2}, LIANG PAN², WU WEI², JIA-QING PEN², YIN-WEI QI³ and XIAO-LIN REN^{1*}

¹College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China, ²Institute of Economic Crop Research, Shiyan Academy of Agricultural Sciences, Shiyan, 442714, Hubei, China and ³School of Agriculture Ningxia University, Yinchuan, 750021, Ningxia, China

J. Serb. Chem. Soc. 81 (6) (2016) 623–632

Fig. S-1. HPLC chromatograms of a standard mixture of water-soluble vitamins; 1= vitamin C, 2=B₃, 3=B₅, 4=B₁₂, 5=B₆, 6=B₉, 7=B₇, 8=B₂ and 9=B₁ (wavelength: 210 (black) and 270 (pink) nm).

*Corresponding author. E-mail: caihou2014@163.com

S188