1 SUPPLEMENTARY MATERIAL TO

2 3	$Synthesis, Characterization, electrochemical studies and X-ray structures of Mixed-Ligand complexes of [Cu(phen)_2(CH_3COO)].2H_2O(ClO_4) and Cu(bipy)_2(CH_3COO)]H_2O(ClO_4)$
4 5	OLUWAFUNMILAYO F. ADEKUNLE ^{1*} , RAY BUTCHER ¹ , OLADAPO BAKARE ¹ AND OLUSEGUN A. ODUNOLA ²
6	Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B.4000, Ogbomoso, Nigeria
7	¹ Department of Chemistry, Howard University, Washington DC, USA
8	² Department of Chemistry, Hallmark University, Ijebu Itele, Nigeria
9	
10 11	CCDC 1418811 and 1418812 are for $[Cu(phen)_2(CH_3COO)].2H_2O(ClO_4)$ (1) and $Cu(bipy)_2(CH_3COO)](ClO_4)H_2O$ (2) respectively
12	

13 Table S1. Crystal data and structure refinement for [Cu(phen)₂(CH₃COO)].2H₂O(ClO₄) (1).

15	Identification code	shelx	
16	Empirical formula	C26 H23 Cl Cu N4 O8	
17	Formula weight	618.47	
18	Temperature	100(2) K	
19	Wavelength	0.71073 Å	
20	Crystal system	Monoclinic	
21	Space group	P n	
22	Unit cell dimensions	a = 9.3682(6) Å	$\alpha = 90^{\circ}$.
23		b = 8.3029(5) Å	β= 103.3014(18)°.
24		c = 16.8784(10) Å	$\gamma = 90^{\circ}.$
25	Volume	1277.64(14) Å ³	
26	Z	2	
27	Density (calculated)	1.608 Mg/m^3	
28	Absorption coefficient	1.019 mm ⁻¹	
29	F(000)	634	
30	Crystal size	0.300 x 0.260 x 0.200 mm ³	
31	Theta range for data collection	2.292 to 30.570°.	
32	Index ranges	-13<=h<=13, -11<=k<=11, -23	3<=1<=24
33	Reflections collected	9896	
34	Independent reflections	6312 [R(int) = 0.0196]	

35	Completeness to theta = 25.500°	99.3 %
36	Absorption correction	Semi-empirical from equivalents
37	Max. and min. transmission	0.7461 and 0.6516
38	Refinement method	Full-matrix least-squares on F ²
39	Data / restraints / parameters	6312 / 8 / 379
40	Goodness-of-fit on F^2	1.070
41	Final R indices [I>2sigma(I)]	R1 = 0.0325, wR2 = 0.0772
42	R indices (all data)	R1 = 0.0377, wR2 = 0.0802
43	Absolute structure parameter	0.521(12)
44	Extinction coefficient	n/a
45	Largest diff. peak and hole	0.601 and -0.278 e.Å ⁻³

47 Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)

48 for $[Cu(phen)_2(CH_3COO)].2H_2O(CIO_4)$ (1). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} 49 tensor.

	Х	У	Z	U(eq)
Cu	2292(1)	4985(1)	6297(1)	14(1)
O(1)	1792(2)	2888(2)	6743(1)	18(1)
O(2)	2670(2)	2136(3)	5695(1)	22(1)
N(1)	2082(3)	6422(3)	7371(2)	15(1)
N(2)	4366(4)	4921(3)	6963(2)	15(1)
N(3)	2796(3)	6505(3)	5453(2)	15(1)
N(4)	267(3)	5241(3)	5589(2)	15(1)
C(11A)	2151(4)	1802(3)	6284(2)	17(1)
C(12A)	1924(5)	80(3)	6503(3)	29(1)
C(1)	936(4)	7070(4)	7596(2)	19(1)
C(2)	1063(4)	7973(4)	8309(2)	23(1)
C(3)	2437(4)	8247(4)	8792(2)	23(1)
C(4)	3674(4)	7578(4)	8582(2)	19(1)
C(5)	5144(4)	7732(4)	9065(2)	23(1)
C(6)	6279(4)	6974(4)	8862(2)	22(1)
C(7)	6068(3)	5989(4)	8148(2)	18(1)
C(8)	7201(3)	5104(4)	7933(2)	20(1)

70	C(9)	6889(3)	4130(4)	7262(2)	22(1)
71	C(10)	5447(3)	4077(4)	6778(2)	20(1)
72	C(11)	4643(3)	5846(3)	7643(2)	15(1)
73	C(12)	3432(3)	6649(3)	7864(2)	16(1)
74	C(13)	4077(3)	7101(3)	5387(2)	18(1)
75	C(14)	4234(4)	8132(4)	4763(2)	21(1)
76	C(15)	3011(4)	8568(4)	4175(2)	20(1)
77	C(16)	1629(3)	7948(3)	4217(2)	16(1)
78	C(17)	288(4)	8283(3)	3629(2)	19(1)
79	C(18)	-1007(4)	7639(4)	3702(2)	19(1)
80	C(19)	-1082(3)	6602(3)	4370(2)	16(1)
81	C(20)	-2379(3)	5868(3)	4481(2)	18(1)
82	C(21)	-2324(3)	4854(4)	5123(2)	18(1)
83	C(22)	-970(3)	4551(4)	5672(2)	19(1)
84	C(23)	215(3)	6243(3)	4946(2)	14(1)
85	C(24)	1589(3)	6920(3)	4871(2)	14(1)
86	Cl(1)	7284(1)	-404(1)	6606(1)	23(1)
87	O(3)	7603(3)	803(4)	6059(2)	41(1)
88	O(4)	7490(3)	-1975(3)	6296(2)	38(1)
89	O(5)	5799(3)	-209(3)	6682(2)	36(1)
90	O(6)	8281(3)	-210(3)	7390(2)	36(1)
91	O(1W)	4978(3)	2019(3)	4944(2)	31(1)
92 93	O(2W)	176(3)	2583(4)	7910(2)	33(1)

106	Table S3. Bond lengths [Å] and angles [°] for $[Cu(phen)_2(CH_3COO)]$.	2H ₂ O(ClO ₄) (1).
	Cu-O(1)	1.995(2)
	Cu-N(4)	2.007(3)
	Cu-N(2)	2.009(3)
	Cu-N(3)	2.038(2)
	Cu-N(1)	2.217(3)
	O(1)-C(11A)	1.282(4)
	O(2)-C(11A)	1.236(4)
	N(1)-C(1)	1.332(4)
	N(1)-C(12)	1.357(4)
	N(2)-C(10)	1.327(4)
	N(2)-C(11)	1.356(4)
	N(3)-C(13)	1.327(4)
	N(3)-C(24)	1.361(4)
	N(4)-C(22)	1.329(4)
	N(4)-C(23)	1.359(4)
	C(11A)-C(12A)	1.504(4)
	C(12A)-H(12A)	0.9800
	C(12A)-H(12B)	0.9800
	C(12A)-H(12C)	0.9800
	C(1)-C(2)	1.400(5)
	C(1)-H(1A)	0.9500
	C(2)-C(3)	1.375(5)
	C(2)-H(2A)	0.9500
	C(3)-C(4)	1.403(4)
	C(3)-H(3A)	0.9500
	C(4)-C(12)	1.410(4)
	C(4)-C(5)	1.436(5)
	C(5)-C(6)	1.346(5)
	C(5)-H(5A)	0.9500
	C(6)-C(7)	1.432(4)
	C(6)-H(6A)	0.9500
	C(7)-C(8)	1.406(4)

C(7)-C(11)	1.414(4)
C(8)-C(9)	1.367(5)
C(8)-H(8A)	0.9500
C(9)-C(10)	1.409(4)
C(9)-H(9A)	0.9500
C(10)-H(10A)	0.9500
C(11)-C(12)	1.437(4)
C(13)-C(14)	1.392(4)
C(13)-H(13A)	0.9500
C(14)-C(15)	1.381(5)
C(14)-H(14A)	0.9500
C(15)-C(16)	1.410(4)
C(15)-H(15A)	0.9500
C(16)-C(24)	1.402(4)
C(16)-C(17)	1.437(4)
C(17)-C(18)	1.356(4)
C(17)-H(17A)	0.9500
C(18)-C(19)	1.434(4)
C(18)-H(18A)	0.9500
C(19)-C(23)	1.403(4)
C(19)-C(20)	1.410(4)
C(20)-C(21)	1.364(5)
C(20)-H(20A)	0.9500
C(21)-C(22)	1.411(4)
C(21)-H(21A)	0.9500
C(22)-H(22A)	0.9500
C(23)-C(24)	1.437(4)
Cl(1)-O(4)	1.434(2)
Cl(1)-O(5)	1.436(3)
Cl(1)-O(3)	1.439(3)
Cl(1)-O(6)	1.442(3)
O(1W)-H(1W1)	0.85(2)
O(1W)-H(1W2)	0.84(2)
O(2W)-H(2W1)	0.84(2)
O(2W)-H(2W2)	0.83(2)
O(1)-Cu-N(4)	92.60(10)

O(1)-Cu-N(2)	92.65(10)
N(4)-Cu-N(2)	174.75(12)
O(1)-Cu-N(3)	156.38(9)
N(4)-Cu-N(3)	81.81(11)
N(2)-Cu-N(3)	93.33(11)
O(1)-Cu-N(1)	95.09(9)
N(4)-Cu-N(1)	100.38(11)
N(2)-Cu-N(1)	79.22(11)
N(3)-Cu-N(1)	108.48(9)
C(11A)-O(1)-Cu	105.61(19)
C(1)-N(1)-C(12)	118.0(3)
C(1)-N(1)-Cu	132.8(2)
C(12)-N(1)-Cu	109.27(19)
C(10)-N(2)-C(11)	119.4(3)
C(10)-N(2)-Cu	125.1(2)
C(11)-N(2)-Cu	115.5(2)
C(13)-N(3)-C(24)	117.5(3)
C(13)-N(3)-Cu	130.5(2)
C(24)-N(3)-Cu	112.00(19)
C(22)-N(4)-C(23)	118.5(3)
C(22)-N(4)-Cu	128.3(2)
C(23)-N(4)-Cu	113.3(2)
O(2)-C(11A)-O(1)	122.3(3)
O(2)-C(11A)-C(12A)	121.0(3)
O(1)-C(11A)-C(12A)	116.6(3)
C(11A)-C(12A)-	109.5
H(12A)	
C(11A)-C(12A)-	109.5
H(12B)	
H(12A)-C(12A)-	109.5
H(12B)	
C(11A)-C(12A)-	109.5
H(12C)	
H(12A)-C(12A)-	109.5
H(12C)	
H(12B)-C(12A)-	109.5

H(12C)	
N(1)-C(1)-C(2)	123.1(3)
N(1)-C(1)-H(1A)	118.5
C(2)-C(1)-H(1A)	118.5
C(3)-C(2)-C(1)	118.8(3)
C(3)-C(2)-H(2A)	120.6
C(1)-C(2)-H(2A)	120.6
C(2)-C(3)-C(4)	119.9(3)
C(2)-C(3)-H(3A)	120.0
C(4)-C(3)-H(3A)	120.0
C(3)-C(4)-C(12)	117.1(3)
C(3)-C(4)-C(5)	124.1(3)
C(12)-C(4)-C(5)	118.7(3)
C(6)-C(5)-C(4)	121.7(3)
C(6)-C(5)-H(5A)	119.2
C(4)-C(5)-H(5A)	119.2
C(5)-C(6)-C(7)	121.1(3)
C(5)-C(6)-H(6A)	119.5
C(7)-C(6)-H(6A)	119.5
C(8)-C(7)-C(11)	117.7(3)
C(8)-C(7)-C(6)	123.4(3)
C(11)-C(7)-C(6)	118.9(3)
C(9)-C(8)-C(7)	119.5(3)
C(9)-C(8)-H(8A)	120.2
C(7)-C(8)-H(8A)	120.2
C(8)-C(9)-C(10)	119.5(3)
C(8)-C(9)-H(9A)	120.2
C(10)-C(9)-H(9A)	120.2
N(2)-C(10)-C(9)	121.9(3)
N(2)-C(10)-H(10A)	119.0
C(9)-C(10)-H(10A)	119.0
N(2)-C(11)-C(7)	121.9(3)
N(2)-C(11)-C(12)	118.2(3)
C(7)-C(11)-C(12)	119.8(3)
N(1)-C(12)-C(4)	123.0(3)
N(1)-C(12)-C(11)	117.2(3)

C(4)-C(12)-C(11)	119.7(3)
N(3)-C(13)-C(14)	123.3(3)
N(3)-C(13)-H(13A)	118.4
C(14)-C(13)-H(13A)	118.4
C(15)-C(14)-C(13)	119.4(3)
C(15)-C(14)-H(14A)	120.3
C(13)-C(14)-H(14A)	120.3
C(14)-C(15)-C(16)	119.2(3)
C(14)-C(15)-H(15A)	120.4
C(16)-C(15)-H(15A)	120.4
C(24)-C(16)-C(15)	116.9(3)
C(24)-C(16)-C(17)	118.9(3)
C(15)-C(16)-C(17)	124.2(3)
C(18)-C(17)-C(16)	121.3(3)
C(18)-C(17)-H(17A)	119.3
C(16)-C(17)-H(17A)	119.3
C(17)-C(18)-C(19)	121.0(3)
C(17)-C(18)-H(18A)	119.5
C(19)-C(18)-H(18A)	119.5
C(23)-C(19)-C(20)	116.8(3)
C(23)-C(19)-C(18)	118.8(3)
C(20)-C(19)-C(18)	124.4(3)
C(21)-C(20)-C(19)	119.8(3)
C(21)-C(20)-H(20A)	120.1
C(19)-C(20)-H(20A)	120.1
C(20)-C(21)-C(22)	119.7(3)
C(20)-C(21)-H(21A)	120.1
C(22)-C(21)-H(21A)	120.1
N(4)-C(22)-C(21)	121.9(3)
N(4)-C(22)-H(22A)	119.1
C(21)-C(22)-H(22A)	119.1
N(4)-C(23)-C(19)	123.3(3)
N(4)-C(23)-C(24)	116.3(3)
C(19)-C(23)-C(24)	120.4(3)
N(3)-C(24)-C(16)	123.7(3)
N(3)-C(24)-C(23)	116.7(3)

C(16)-C(24)-C(23)	119.6(3)
O(4)-Cl(1)-O(5)	110.43(17)
O(4)-Cl(1)-O(3)	109.61(19)
O(5)-Cl(1)-O(3)	109.10(17)
O(4)-Cl(1)-O(6)	108.83(16)
O(5)-Cl(1)-O(6)	109.93(19)
O(3)-Cl(1)-O(6)	108.92(19)
H(1W1)-O(1W)-	101(3)
H(1W2)	
H(2W1)-O(2W)-	104(3)
H(2W2)	

108 Symmetry transformations used to generate equivalent atoms:109

- 110 Table S4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for [Cu(phen)₂(CH₃COO)].2H₂O(ClO₄) (1). The
- anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$
- 112

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
Cu	12(1)	16(1)	13(1)	2(1)	2(1)	0(1)	
O(1)	21(1)	15(1)	19(1)	2(1)	5(1)	0(1)	
O(2)	20(1)	29(1)	18(1)	2(1)	5(1)	2(1)	
N(1)	16(1)	15(1)	15(1)	2(1)	3(1)	0(1)	
N(2)	14(1)	17(1)	12(1)	2(1)	0(1)	1(1)	
N(3)	14(1)	13(1)	16(1)	-1(1)	4(1)	-1(1)	
N(4)	14(1)	16(1)	15(1)	1(1)	5(1)	0(1)	
C(11A)	16(1)	18(1)	14(1)	1(1)	-1(1)	0(1)	
C(12A)	40(2)	17(1)	30(2)	1(1)	11(2)	0(1)	
C(1)	21(2)	19(1)	18(2)	5(1)	5(1)	3(1)	
C(2)	28(2)	22(1)	22(2)	3(1)	12(1)	7(1)	
C(3)	33(2)	19(1)	17(2)	0(1)	8(1)	5(1)	
C(4)	27(2)	14(1)	15(1)	3(1)	3(1)	0(1)	
C(5)	32(2)	18(1)	15(1)	-1(1)	-2(1)	-3(1)	
C(6)	24(2)	20(1)	17(2)	3(1)	-5(1)	-4(1)	
C(7)	17(2)	19(1)	16(1)	3(1)	0(1)	-4(1)	

C(8)	13(1)	26(2)	21(2)	7(1)	0(1)	-1(1)	
C(9)	15(1)	30(2)	23(2)	6(1)	5(1)	3(1)	
C(10)	16(1)	25(2)	19(2)	1(1)	5(1)	1(1)	
C(11)	16(1)	14(1)	15(1)	4(1)	2(1)	-2(1)	
C(12)	17(1)	13(1)	16(1)	2(1)	2(1)	-1(1)	
C(13)	14(1)	20(1)	21(2)	-1(1)	4(1)	-2(1)	
C(14)	20(2)	21(1)	23(2)	-1(1)	9(1)	-6(1)	
C(15)	27(2)	17(1)	19(2)	1(1)	11(1)	-4(1)	
C(16)	21(2)	13(1)	14(1)	-2(1)	4(1)	0(1)	
C(17)	25(2)	16(1)	15(1)	2(1)	1(1)	3(1)	
C(18)	20(2)	19(1)	16(2)	1(1)	-2(1)	2(1)	
C(19)	14(1)	17(1)	16(1)	-3(1)	0(1)	1(1)	
C(20)	13(1)	20(1)	21(2)	-5(1)	1(1)	2(1)	
C(21)	12(1)	22(2)	22(2)	-4(1)	6(1)	-2(1)	
C(22)	17(2)	19(1)	20(2)	2(1)	4(1)	-1(1)	
C(23)	14(1)	13(1)	13(1)	-1(1)	2(1)	0(1)	
C(24)	17(1)	12(1)	14(1)	-2(1)	3(1)	-1(1)	
Cl(1)	19(1)	24(1)	24(1)	-6(1)	-2(1)	2(1)	
O(3)	37(2)	47(2)	37(2)	12(1)	4(1)	-1(1)	
O(4)	29(2)	30(1)	50(2)	-16(1)	-5(1)	8(1)	
O(5)	22(1)	41(2)	44(2)	-5(1)	7(1)	6(1)	
O(6)	33(2)	41(2)	26(1)	-9(1)	-10(1)	3(1)	
O(1W)	30(1)	36(1)	27(1)	2(1)	10(1)	-5(1)	
O(2W)	22(1)	50(2)	27(1)	-6(1)	8(1)	-8(1)	

126	Table S5.	Hydrogen coordinates	(x 10 ⁴) and isotrop	pic dis	placement	parameters ($(Å^2)$	ς 10 ²	3)
		1 1		/						

127 for [Cu(phen)₂(CH₃COO)].2H₂O(ClO₄) (1).

	Х	У	Z	U(eq)	
H(12A)	2737	-580	6410	43	
H(12B)	998	-318	6165	43	
H(12C)	1890	16	7078	43	
H(1A)	-14	6910	7256	23	
H(2A)	216	8390	8456	27	
H(3A)	2548	8889	9269	27	
H(5A)	5319	8385	9540	27	
H(6A)	7237	7095	9199	27	
H(8A)	8177	5183	8251	24	
H(9A)	7639	3494	7124	27	
H(10A)	5244	3417	6305	24	
H(13A)	4930	6810	5787	22	
H(14A)	5175	8533	4742	25	
H(15A)	3099	9276	3747	24	
H(17A)	309	8969	3182	23	
H(18A)	-1876	7879	3303	23	
H(20A)	-3288	6078	4110	22	
H(21A)	-3194	4355	5201	22	
H(22A)	-942	3834	6114	23	
H(1W1)	5680(50)	1460(70)	5220(40)	110(30)	
H(1W2)	4270(50)	1700(70)	5130(40)	100(20)	
H(2W1)	690(50)	2550(60)	7560(30)	59(17)	
H(2W2)	-330(50)	1760(40)	7830(30)	50(15)	

136	Table S6. Torsion angles [°] for $[Cu(phen)_2(CH_3CO)]$	$O)].2H_2O(ClO_4) (1).$
	Cu-O(1)-C(11A)-O(2)	-1.0(4)
	Cu-O(1)-C(11A)-C(12A)	178.4(3)
	C(12)-N(1)-C(1)-C(2)	0.4(4)
	Cu-N(1)-C(1)-C(2)	-178.8(2)
	N(1)-C(1)-C(2)-C(3)	1.8(5)
	C(1)-C(2)-C(3)-C(4)	-2.2(5)
	C(2)-C(3)-C(4)-C(12)	0.5(4)
	C(2)-C(3)-C(4)-C(5)	-177.0(3)
	C(3)-C(4)-C(5)-C(6)	175.4(3)
	C(12)-C(4)-C(5)-C(6)	-2.1(5)
	C(4)-C(5)-C(6)-C(7)	0.5(5)
	C(5)-C(6)-C(7)-C(8)	-176.5(3)
	C(5)-C(6)-C(7)-C(11)	1.4(4)
	C(11)-C(7)-C(8)-C(9)	-1.2(4)
	C(6)-C(7)-C(8)-C(9)	176.7(3)
	C(7)-C(8)-C(9)-C(10)	2.5(5)
	C(11)-N(2)-C(10)-C(9)	-1.0(5)
	Cu-N(2)-C(10)-C(9)	178.0(2)
	C(8)-C(9)-C(10)-N(2)	-1.5(5)
	C(10)-N(2)-C(11)-C(7)	2.4(4)
	Cu-N(2)-C(11)-C(7)	-176.6(2)
	C(10)-N(2)-C(11)-C(12)	-175.3(3)
	Cu-N(2)-C(11)-C(12)	5.7(3)
	C(8)-C(7)-C(11)-N(2)	-1.3(4)
	C(6)-C(7)-C(11)-N(2)	-179.3(3)
	C(8)-C(7)-C(11)-C(12)	176.3(3)
	C(6)-C(7)-C(11)-C(12)	-1.7(4)
	C(1)-N(1)-C(12)-C(4)	-2.2(4)
	Cu-N(1)-C(12)-C(4)	177.2(2)
	C(1)-N(1)-C(12)-C(11)	175.6(2)
	Cu-N(1)-C(12)-C(11)	-5.0(3)

C(3)-C(4)-C(12)-N(1)	1.7(4)
C(5)-C(4)-C(12)-N(1)	179.4(3)
C(3)-C(4)-C(12)-C(11)	-176.0(3)
C(5)-C(4)-C(12)-C(11)	1.7(4)
N(2)-C(11)-C(12)-N(1)	0.0(4)
C(7)-C(11)-C(12)-N(1)	-177.7(3)
N(2)-C(11)-C(12)-C(4)	177.9(3)
C(7)-C(11)-C(12)-C(4)	0.2(4)
C(24)-N(3)-C(13)-C(14)	0.7(4)
Cu-N(3)-C(13)-C(14)	179.7(2)
N(3)-C(13)-C(14)-C(15)	-0.2(5)
C(13)-C(14)-C(15)-C(16)	-0.4(4)
C(14)-C(15)-C(16)-C(24)	0.5(4)
C(14)-C(15)-C(16)-C(17)	-178.4(3)
C(24)-C(16)-C(17)-C(18)	0.7(4)
C(15)-C(16)-C(17)-C(18)	179.5(3)
C(16)-C(17)-C(18)-C(19)	0.2(5)
C(17)-C(18)-C(19)-C(23)	-0.9(4)
C(17)-C(18)-C(19)-C(20)	-179.0(3)
C(23)-C(19)-C(20)-C(21)	-0.5(4)
C(18)-C(19)-C(20)-C(21)	177.7(3)
C(19)-C(20)-C(21)-C(22)	0.1(4)
C(23)-N(4)-C(22)-C(21)	-1.2(5)
Cu-N(4)-C(22)-C(21)	179.8(2)
C(20)-C(21)-C(22)-N(4)	0.7(5)
C(22)-N(4)-C(23)-C(19)	0.8(4)
Cu-N(4)-C(23)-C(19)	180.0(2)
C(22)-N(4)-C(23)-C(24)	-178.2(3)
Cu-N(4)-C(23)-C(24)	0.9(3)
C(20)-C(19)-C(23)-N(4)	0.0(4)
C(18)-C(19)-C(23)-N(4)	-178.3(3)
C(20)-C(19)-C(23)-C(24)	179.0(3)
C(18)-C(19)-C(23)-C(24)	0.7(4)
C(13)-N(3)-C(24)-C(16)	-0.6(4)
Cu-N(3)-C(24)-C(16)	-179.8(2)
C(13)-N(3)-C(24)-C(23)	179.1(2)

Cu-N(3)-C(24)-C(23)	0.0(3)
C(15)-C(16)-C(24)-N(3)	0.1(4)
C(17)-C(16)-C(24)-N(3)	179.0(3)
C(15)-C(16)-C(24)-C(23)	-179.7(3)
C(17)-C(16)-C(24)-C(23)	-0.8(4)
N(4)-C(23)-C(24)-N(3)	-0.6(4)
C(19)-C(23)-C(24)-N(3)	-179.7(3)
N(4)-C(23)-C(24)-C(16)	179.2(3)
C(19)-C(23)-C(24)-C(16)	0.1(4)

Symmetry transformations used to generate equivalent atoms:

140 Table S7. Hydrogen bonds for $[Cu(phen)_2(CH_3COO)].2H_2O(ClO_4)$ (1) [Å and °].

Table 37. Hydrogen bolids for [C	Table S7. Hydrogen bonds for $[Cu(pnen)_2(CH_3COO)].2H_2O(ClO_4)$ (1) [A and].					
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
C(2)-H(2A)O(6)#1	0.95	2.53	3.101(4)	119.2		
C(2)-H(2A)O(1W)#2	0.95	2.59	3.153(4)	117.9		
C(9)-H(9A)O(2W)#3	0.95	2.56	3.283(4)	133.5		
C(10)-H(10A)O(2)	0.95	2.62	3.243(4)	123.6		
C(10)-H(10A)O(1W)	0.95	2.53	3.474(4)	169.7		
C(13)-H(13A)N(2)	0.95	2.68	3.177(4)	113.5		
C(13)-H(13A)O(4)#4	0.95	2.56	3.302(4)	135.0		
C(21)-H(21A)O(1W)#5	0.95	2.56	3.416(4)	150.5		
C(22)-H(22A)O(1)	0.95	2.66	3.118(4)	110.4		
O(1W)-H(1W1)O(3)	0.85(2)	2.09(3)	2.912(4)	162(7)		
O(1W)-H(1W2)O(2)	0.84(2)	1.98(4)	2.747(4)	151(6)		
O(2W)-H(2W1)O(1)	0.84(2)	1.93(2)	2.758(3)	169(5)		
O(2W)-H(2W2)O(6)#5	0.83(2)	2.11(3)	2.930(4)	170(5)		

141 Symmetry transformations used to generate equivalent atoms:

#1 x-1,y+1,z #2 x-1/2,-y+1,z+1/2 #3 x+1,y,z

143 #4 x,y+1,z #5 x-1,y,z

. . . .

Table S8. Crystal data and structure refinement for Cu(bipy)₂(CH₃COO)](ClO₄)H₂O (**2**).

Identification code	shelxl			
Empirical formula	C22 H21 CI Cu N4 O7			
Formula weight	552.42			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Triclinic			
Space group	P-1			
Unit cell dimensions	a = 8.2822(4) Å	α= 78.729(2)°.		
	b = 9.4748(4) Å	β= 82.881(2)°.		
	c = 14.7992(6) Å	$\gamma = 85.092(2)^{\circ}.$		
Volume	1127.90(9) Å ³			
Z	2			
Density (calculated)	1.627 Mg/m ³			
Absorption coefficient	1.140 mm ⁻¹			
F(000)	566			
Crystal size	0.500 x 0.240 x 0.200 mm ³			
Theta range for data collection	2.20 to 30.58°.			
Index ranges	-11<=h<=11, -13<=k<=13, -			
	21<=l<=21			
Reflections collected	58024			
Independent reflections	6914 [R(int) = 0.0421]			
Completeness to theta = 25.50°	100.0 %			
Absorption correction	Semi-empirical from			
	equivalents			
Max. and min. transmission	0.7461 and 0.6323			
Refinement method	Full-matrix least-squares on			
	F^2			
Data / restraints / parameters	6914 / 68 / 339			
Goodness-of-fit on F ²	1.083			

Final R indices [I>2sigma(I)]	R1 = 0.0357, wR2 = 0.0776
R indices (all data)	R1 = 0.0451, wR2 = 0.0814
Largest diff. peak and hole	0.563 and -0.384 e.Å ⁻³

154 Table S9. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)

1972	X	V	Z	U(eq)
u	5317(1)	4840(1)	7450(1)	14(1)
^c l(1)	339(1)	-375(1)	7208(1)	21(1)
O(11)	1427(2)	-1065(2)	6565(1)	36(1)
O(12)	1148(2)	775(2)	7437(1)	42(1)
O(13)	-1104(2)	209(2)	6787(1)	37(1)
O(14)	-83(3)	-1404(2)	8035(1)	45(1)
D(11A)	1276(12)	-797(13)	6409(5)	36(1)
D(12A)	717(15)	1053(5)	7273(9)	42(1)
D(13A)	-1371(3)	-383(14)	7122(9)	37(1)
O(14A)	729(17)	-1368(10)	8029(5)	45(1)
D(1)	3129(1)	5531(1)	7058(1)	17(1)
D(2)	2394(2)	4246(2)	8442(1)	30(1)
O(1W)	2286(2)	1305(2)	9032(1)	30(1)
N(1)	5532(2)	3434(1)	6597(1)	14(1)
J(2)	6868(2)	5964(2)	6279(1)	15(1)
N(3)	6693(2)	3667(2)	8423(1)	14(1)
√ (4)	5323(2)	6280(1)	8251(1)	15(1)
C(1)	4781(2)	2193(2)	6797(1)	17(1)
C(2)	4932(2)	1227(2)	6197(1)	20(1)
C(3)	5892(2)	1568(2)	5356(1)	20(1)
C(4)	6635(2)	2865(2)	5133(1)	18(1)
C(5)	6430(2)	3790(2)	5766(1)	14(1)
C(6)	7155(2)	5214(2)	5584(1)	15(1)
C(7)	8065(2)	5748(2)	4752(1)	21(1)
C(8)	8725(2)	7078(2)	4645(1)	24(1)
C(9)	8442(2)	7847(2)	5356(1)	22(1)

7254(2)

6161(1)

18(1)

7498(2)

C(10)

	C(11)	7313(2)	2299(2)	8480(1)	17(1)
	C(12)	8199(2)	1609(2)	9190(1)	20(1)
	C(13)	8469(2)	2359(2)	9867(1)	21(1)
	C(14)	7840(2)	3776(2)	9816(1)	17(1)
	C(15)	6958(2)	4400(2)	9084(1)	14(1)
	C(16)	6249(2)	5903(2)	8955(1)	14(1)
	C(17)	6513(2)	6878(2)	9502(1)	18(1)
	C(18)	5791(2)	8266(2)	9313(1)	20(1)
	C(19)	4814(2)	8637(2)	8598(1)	20(1)
	C(20)	4604(2)	7613(2)	8078(1)	18(1)
	C(11A)	2049(2)	5009(2)	7699(1)	18(1)
~	C(12A)	301(2)	5339(3)	7513(2)	32(1)
b					
7					
_					
3					
9					
า					
4					
1					
2					
3					
4					
5					
6					
7					
8					
9					
0					
1					
2					
3					
4					

179	Table S10. Bond lengths [Å] and ang	thes [°] for Cu(bipy) ₂ (CH ₃ COO)](ClO ₄)H ₂ O (2).
	Cu-N(4)	1.9750(14)
	Cu-O(1)	1.9896(12)
	Cu-N(1)	1.9899(13)
	Cu-N(3)	2.0422(14)
	Cu-N(2)	2.1786(14)
	Cl(1)-O(13)	1.4341(11)
	Cl(1)-O(14)	1.4343(11)
	Cl(1)-O(13A)	1.4378(12)
	Cl(1)-O(11A)	1.4367(12)
	Cl(1)-O(14A)	1.4377(12)
	Cl(1)-O(11)	1.4404(11)
	Cl(1)-O(12A)	1.4382(12)
	Cl(1)-O(12)	1.4416(11)
	O(1)-C(11A)	1.275(2)
	O(2)-C(11A)	1.244(2)
	O(1W)-H(1W1)	0.88(3)
	O(1W)-H(1W2)	0.87(3)
	N(1)-C(1)	1.341(2)
	N(1)-C(5)	1.354(2)
	N(2)-C(10)	1.342(2)
	N(2)-C(6)	1.347(2)
	N(3)-C(11)	1.343(2)
	N(3)-C(15)	1.353(2)
	N(4)-C(20)	1.341(2)
	N(4)-C(16)	1.345(2)
	C(1)-C(2)	1.383(2)
	C(1)-H(1A)	0.9500
	C(2)-C(3)	1.387(2)
	C(2)-H(2A)	0.9500
	C(3)-C(4)	1.385(2)

C(3)-H(3A)	0.9500
C(4)-C(5)	1.391(2)
C(4)-H(4A)	0.9500
C(5)-C(6)	1.487(2)
C(6)-C(7)	1.390(2)
C(7)-C(8)	1.390(2)
C(7)-H(7A)	0.9500
C(8)-C(9)	1.379(3)
C(8)-H(8A)	0.9500
C(9)-C(10)	1.389(2)
C(9)-H(9A)	0.9500
C(10)-H(10A)	0.9500
C(11)-C(12)	1.383(2)
C(11)-H(11A)	0.9500
C(12)-C(13)	1.385(3)
C(12)-H(12A)	0.9500
C(13)-C(14)	1.389(2)
C(13)-H(13A)	0.9500
C(14)-C(15)	1.389(2)
C(14)-H(14A)	0.9500
C(15)-C(16)	1.479(2)
C(16)-C(17)	1.389(2)
C(17)-C(18)	1.388(2)
C(17)-H(17A)	0.9500
C(18)-C(19)	1.385(3)
C(18)-H(18A)	0.9500
C(19)-C(20)	1.384(2)
C(19)-H(19A)	0.9500
C(20)-H(20A)	0.9500
C(11A)-C(12A)	1.502(3)
C(12A)-H(12B)	0.9800
C(12A)-H(12C)	0.9800
C(12A)-H(12D)	0.9800
N(4)-Cu-O(1)	94.13(5)
N(4)-Cu-N(1)	174.48(6)
O(1)-Cu-N(1)	89.80(5)

	N(4)-Cu-N(3)	81.11(5)
	O(1)-Cu-N(3)	149.08(5)
180		
	N(1)-Cu-N(3)	97.46(5)
	N(4)-Cu-N(2)	96.31(5)
	O(1)-Cu-N(2)	100.18(5)
	N(1)-Cu-N(2)	79.16(5)
	N(3)-Cu-N(2)	110.70(5)
	O(13)-Cl(1)-O(14)	110.03(7)
	O(13)-Cl(1)-O(13A)	28.3(5)
	O(14)-Cl(1)-O(13A)	82.3(5)
	O(13)-Cl(1)-O(11A)	98.3(5)
	O(14)-Cl(1)-O(11A)	121.6(5)
	O(13A)-Cl(1)-O(11A)	109.54(9)
	O(13)-Cl(1)-O(14A)	137.1(5)
	O(14)-Cl(1)-O(14A)	27.2(5)
	O(13A)-Cl(1)-O(14A)	109.44(9)
	O(11A)-Cl(1)-O(14A)	109.55(9)
	O(13)-Cl(1)-O(11)	109.48(7)
	O(14)-Cl(1)-O(11)	109.59(7)
	O(13A)-Cl(1)-O(11)	115.8(5)
	O(11A)-Cl(1)-O(11)	13.4(5)
	O(14A)-Cl(1)-O(11)	96.2(5)
	O(13)-Cl(1)-O(12A)	90.1(5)
	O(14)-Cl(1)-O(12A)	119.9(5)
	O(13A)-Cl(1)-O(12A)	109.40(9)
	O(11A)-Cl(1)-O(12A)	109.49(9)
	O(14A)-Cl(1)-O(12A)	109.41(9)
	O(11)-Cl(1)-O(12A)	115.7(6)
	O(13)-Cl(1)-O(12)	109.43(7)
	O(14)-Cl(1)-O(12)	109.40(7)
	O(13A)-Cl(1)-O(12)	126.4(5)
	O(11A)-Cl(1)-O(12)	107.2(6)
	O(14A)-Cl(1)-O(12)	93.0(5)
	O(11)-Cl(1)-O(12)	108.89(7)
	O(12A)-Cl(1)-O(12)	19.4(5)

C(11A)-O(1)-Cu	108.47(10)
H(1W1)-O(1W)-H(1W2)	104(3)
C(1)-N(1)-C(5)	119.38(14)
C(1)-N(1)-Cu	122.99(11)
C(5)-N(1)-Cu	117.58(11)
C(10)-N(2)-C(6)	118.56(14)
C(10)-N(2)-Cu	129.68(12)
C(6)-N(2)-Cu	111.73(10)
C(11)-N(3)-C(15)	118.58(14)
C(11)-N(3)-Cu	128.08(11)
C(15)-N(3)-Cu	113.33(10)
C(20)-N(4)-C(16)	119.89(14)
C(20)-N(4)-Cu	124.14(11)
C(16)-N(4)-Cu	115.65(11)
N(1)-C(1)-C(2)	122.50(15)
N(1)-C(1)-H(1A)	118.7
C(2)-C(1)-H(1A)	118.7
C(1)-C(2)-C(3)	118.26(16)
C(1)-C(2)-H(2A)	120.9
C(3)-C(2)-H(2A)	120.9
C(4)-C(3)-C(2)	119.69(16)
C(4)-C(3)-H(3A)	120.2
C(2)-C(3)-H(3A)	120.2
C(3)-C(4)-C(5)	119.12(15)
C(3)-C(4)-H(4A)	120.4
C(5)-C(4)-H(4A)	120.4
N(1)-C(5)-C(4)	120.99(15)
N(1)-C(5)-C(6)	115.88(14)
C(4)-C(5)-C(6)	123.14(14)
N(2)-C(6)-C(7)	121.88(15)
N(2)-C(6)-C(5)	115.60(14)
C(7)-C(6)-C(5)	122.52(15)
C(8)-C(7)-C(6)	118.81(16)
C(8)-C(7)-H(7A)	120.6
C(6)-C(7)-H(7A)	120.6
C(9)-C(8)-C(7)	119.55(16)

C(9)-C(8)-H(8A)	120.2
C(7)-C(8)-H(8A)	120.2
C(8)-C(9)-C(10)	118.28(16)
C(8)-C(9)-H(9A)	120.9
C(10)-C(9)-H(9A)	120.9
N(2)-C(10)-C(9)	122.90(16)
N(2)-C(10)-H(10A)	118.6
C(9)-C(10)-H(10A)	118.6
N(3)-C(11)-C(12)	122.60(16)
N(3)-C(11)-H(11A)	118.7
C(12)-C(11)-H(11A)	118.7
C(11)-C(12)-C(13)	118.76(16)
C(11)-C(12)-H(12A)	120.6
C(13)-C(12)-H(12A)	120.6
C(12)-C(13)-C(14)	119.31(15)
C(12)-C(13)-H(13A)	120.3
C(14)-C(13)-H(13A)	120.3
C(15)-C(14)-C(13)	118.80(16)
C(15)-C(14)-H(14A)	120.6
C(13)-C(14)-H(14A)	120.6
N(3)-C(15)-C(14)	121.94(15)
N(3)-C(15)-C(16)	114.66(13)
C(14)-C(15)-C(16)	123.40(14)
N(4)-C(16)-C(17)	121.39(15)
N(4)-C(16)-C(15)	114.87(14)
C(17)-C(16)-C(15)	123.74(14)
C(18)-C(17)-C(16)	118.68(15)
C(18)-C(17)-H(17A)	120.7
C(16)-C(17)-H(17A)	120.7
C(19)-C(18)-C(17)	119.57(16)
C(19)-C(18)-H(18A)	120.2
C(17)-C(18)-H(18A)	120.2
C(20)-C(19)-C(18)	118.79(16)
C(20)-C(19)-H(19A)	120.6
C(18)-C(19)-H(19A)	120.6
N(4)-C(20)-C(19)	121.67(16)

N(4)-C(20)-H(20A)	119.2
C(19)-C(20)-H(20A)	119.2
O(2)-C(11A)-O(1)	122.79(16)
O(2)-C(11A)-C(12A)	120.44(16)
O(1)-C(11A)-C(12A)	116.76(15)
C(11A)-C(12A)-H(12B)	109.5
C(11A)-C(12A)-H(12C)	109.5
H(12B)-C(12A)-H(12C)	109.5
C(11A)-C(12A)-H(12D)	109.5
H(12B)-C(12A)-H(12D)	109.5
H(12C)-C(12A)-H(12D)	109.5
	1

- 181 Symmetry transformations used to generate equivalent atoms:182

Table S11. Anisotropic displacement parameters (Å²x 10³) for Cu(bipy)₂(CH₃COO)](ClO₄)H₂O (**2**). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

anisotropic	displacement	factor exponen	t takes the form	n: $-2\pi^2$ [h ² a ^{*2} [$J^{11} + + 2 h l$	$x a^* b^* U^{12}$]	
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
Cu	15(1)	13(1)	14(1)	-4(1)	-3(1)	1(1)	
Cl(1)	24(1)	22(1)	17(1)	-2(1)	-4(1)	-5(1)	
O(11)	36(1)	43(1)	29(1)	-11(1)	1(1)	5(1)	
O(12)	58(1)	53(1)	25(1)	-12(1)	-6(1)	-36(1)	
O(13)	31(1)	34(1)	49(1)	-14(1)	-18(1)	9(1)	
O(14)	64(2)	39(1)	25(1)	7(1)	5(1)	-14(1)	
O(11A)	36(1)	43(1)	29(1)	-11(1)	1(1)	5(1)	
O(12A)	58(1)	53(1)	25(1)	-12(1)	-6(1)	-36(1)	
O(13A)	31(1)	34(1)	49(1)	-14(1)	-18(1)	9(1)	
O(14A)	64(2)	39(1)	25(1)	7(1)	5(1)	-14(1)	
O(1)	15(1)	20(1)	14(1)	-2(1)	-1(1)	0(1)	
O(2)	42(1)	30(1)	18(1)	6(1)	-10(1)	-16(1)	
O(1W)	36(1)	25(1)	32(1)	-10(1)	-14(1)	6(1)	
N(1)	13(1)	14(1)	14(1)	-3(1)	-2(1)	-2(1)	
N(2)	14(1)	15(1)	17(1)	-3(1)	-4(1)	-1(1)	
N(3)	14(1)	14(1)	15(1)	-3(1)	-1(1)	-1(1)	
N(4)	16(1)	13(1)	15(1)	-3(1)	-2(1)	1(1)	
C(1)	18(1)	17(1)	16(1)	-2(1)	0(1)	-4(1)	
C(2)	23(1)	17(1)	21(1)	-5(1)	-2(1)	-6(1)	
C(3)	25(1)	20(1)	18(1)	-8(1)	-3(1)	-3(1)	
C(4)	19(1)	19(1)	15(1)	-4(1)	-1(1)	-2(1)	
C(5)	13(1)	15(1)	14(1)	-3(1)	-3(1)	-1(1)	
C(6)	14(1)	14(1)	16(1)	-1(1)	-4(1)	-1(1)	
C(7)	26(1)	19(1)	17(1)	-2(1)	-1(1)	-3(1)	
C(8)	27(1)	22(1)	21(1)	4(1)	0(1)	-6(1)	
C(9)	22(1)	17(1)	25(1)	2(1)	-7(1)	-5(1)	
C(10)	19(1)	16(1)	22(1)	-3(1)	-6(1)	-3(1)	

	C(11)	17(1)	14(1)	20(1)	-4(1)	-1(1)	1(1)
	C(12)	19(1)	16(1)	25(1)	-1(1)	-2(1)	3(1)
	C(13)	19(1)	22(1)	19(1)	2(1)	-4(1)	2(1)
	C(14)	18(1)	20(1)	14(1)	-2(1)	-3(1)	-1(1)
	C(15)	12(1)	14(1)	14(1)	-2(1)	1(1)	-2(1)
	C(16)	14(1)	13(1)	14(1)	-2(1)	1(1)	-1(1)
	C(17)	19(1)	19(1)	16(1)	-5(1)	-3(1)	-2(1)
	C(18)	23(1)	18(1)	21(1)	-9(1)	0(1)	-3(1)
	C(19)	24(1)	13(1)	22(1)	-4(1)	1(1)	1(1)
	C(20)	19(1)	17(1)	19(1)	-2(1)	-3(1)	2(1)
	C(11A)	19(1)	19(1)	15(1)	-5(1)	-2(1)	-4(1)
_	C(12A)	16(1)	49(1)	30(1)	-6(1)	2(1)	-4(1)
/							
8							
9							
0							
1							
T							
2							
3							
4							
5							
с С							
D							
7							
8							
9							
9 0							
9 0							
9 0 1							
9 0 1 2							
9 0 1 2 3							
9 0 1 2 3 4							

230Table S12. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å $^2x \ 10^3$)231for Cu(bipy)₂(CH₃COO)](ClO₄)H₂O (**2**).

232 _

	Х	у	Z	U(eq)
H(1W1)	2220(40)	2250(30)	8850(20)	47(8)
H(1W2)	1760(40)	990(30)	8640(20)	50(8)
H(1A)	4121	1970	7372	21
H(2A)	4392	353	6356	24
H(3A)	6039	914	4937	24
H(4A)	7276	3119	4554	21
H(7A)	8232	5212	4265	25
H(8A)	9368	7455	4087	29
H(9A)	8880	8759	5296	26
H(10A)	7290	7785	6650	22
H(11A)	7136	1786	8014	20
H(12A)	8616	638	9214	24
H(13A)	9077	1909	10361	25
H(14A)	8010	4308	10273	21
H(17A)	7174	6602	9996	21
H(18A)	5966	8956	9672	24
H(19A)	4296	9577	8466	24
H(20A)	3935	7861	7587	22
H(12B)	-304	5767	8016	48
H(12C)	-184	4446	7477	48
H(12D)	250	6019	6925	48

241	Table S13. Torsion angles [°] for Cu(bipy) ₂ (CH ₃ COO)](0	ClO ₄)H ₂ O (2).
	N(4)-Cu-O(1)-C(11A)	-80.21(11)
	N(1)-Cu-O(1)-C(11A)	103.66(11)
	N(3)-Cu-O(1)-C(11A)	-0.64(17)
	N(2)-Cu-O(1)-C(11A)	-177.38(11)
	N(4)-Cu-N(1)-C(1)	146.8(5)
	O(1)-Cu-N(1)-C(1)	-77.67(13)
	N(3)-Cu-N(1)-C(1)	72.18(13)
	N(2)-Cu-N(1)-C(1)	-178.07(14)
	N(4)-Cu-N(1)-C(5)	-35.8(6)
	O(1)-Cu-N(1)-C(5)	99.69(12)
	N(3)-Cu-N(1)-C(5)	-110.45(12)
	N(2)-Cu-N(1)-C(5)	-0.71(11)
	N(4)-Cu-N(2)-C(10)	-3.57(15)
	O(1)-Cu-N(2)-C(10)	91.79(14)
	N(1)-Cu-N(2)-C(10)	179.62(15)
	N(3)-Cu-N(2)-C(10)	-86.42(15)
	N(4)-Cu-N(2)-C(6)	178.41(11)
	O(1)-Cu-N(2)-C(6)	-86.23(11)
	N(1)-Cu-N(2)-C(6)	1.60(11)
	N(3)-Cu-N(2)-C(6)	95.56(11)
	N(4)-Cu-N(3)-C(11)	177.52(15)
	O(1)-Cu-N(3)-C(11)	94.37(16)
	N(1)-Cu-N(3)-C(11)	-7.87(14)
	N(2)-Cu-N(3)-C(11)	-89.06(14)
	N(4)-Cu-N(3)-C(15)	-1.45(11)
	O(1)-Cu-N(3)-C(15)	-84.60(14)
	N(1)-Cu-N(3)-C(15)	173.16(11)
	N(2)-Cu-N(3)-C(15)	91.97(11)
	O(1)-Cu-N(4)-C(20)	-32.56(14)
	N(1)-Cu-N(4)-C(20)	102.8(6)

N(3)-Cu-N(4)-C(20)	178.20(14)
N(2)-Cu-N(4)-C(20)	68.17(14)
O(1)-Cu-N(4)-C(16)	153.98(11)
N(1)-Cu-N(4)-C(16)	-70.7(6)
N(3)-Cu-N(4)-C(16)	4.74(11)
N(2)-Cu-N(4)-C(16)	-105.29(12)
C(5)-N(1)-C(1)-C(2)	2.3(2)
Cu-N(1)-C(1)-C(2)	179.64(13)
N(1)-C(1)-C(2)-C(3)	-0.3(3)
C(1)-C(2)-C(3)-C(4)	-1.5(3)
C(2)-C(3)-C(4)-C(5)	1.4(3)
C(1)-N(1)-C(5)-C(4)	-2.5(2)
Cu-N(1)-C(5)-C(4)	-179.92(12)
C(1)-N(1)-C(5)-C(6)	177.23(14)
Cu-N(1)-C(5)-C(6)	-0.23(18)
C(3)-C(4)-C(5)-N(1)	0.6(2)
C(3)-C(4)-C(5)-C(6)	-179.03(15)
C(10)-N(2)-C(6)-C(7)	-0.7(2)
Cu-N(2)-C(6)-C(7)	177.53(13)
C(10)-N(2)-C(6)-C(5)	179.57(14)
Cu-N(2)-C(6)-C(5)	-2.16(17)
N(1)-C(5)-C(6)-N(2)	1.7(2)
C(4)-C(5)-C(6)-N(2)	-178.62(15)
N(1)-C(5)-C(6)-C(7)	-177.99(15)
C(4)-C(5)-C(6)-C(7)	1.7(2)
N(2)-C(6)-C(7)-C(8)	1.5(3)
C(5)-C(6)-C(7)-C(8)	-178.83(16)
C(6)-C(7)-C(8)-C(9)	-1.2(3)
C(7)-C(8)-C(9)-C(10)	0.1(3)
C(6)-N(2)-C(10)-C(9)	-0.4(2)
Cu-N(2)-C(10)-C(9)	-178.28(12)
C(8)-C(9)-C(10)-N(2)	0.7(3)
C(15)-N(3)-C(11)-C(12)	0.5(2)
Cu-N(3)-C(11)-C(12)	-178.40(12)
N(3)-C(11)-C(12)-C(13)	-0.5(3)
C(11)-C(12)-C(13)-C(14)	0.2(3)

C(12)-C(13)-C(14)-C(15)	-0.1(3)
C(11)-N(3)-C(15)-C(14)	-0.4(2)
Cu-N(3)-C(15)-C(14)	178.70(12)
C(11)-N(3)-C(15)-C(16)	179.18(14)
Cu-N(3)-C(15)-C(16)	-1.74(16)
C(13)-C(14)-C(15)-N(3)	0.2(2)
C(13)-C(14)-C(15)-C(16)	-179.35(15)
C(20)-N(4)-C(16)-C(17)	-1.4(2)
Cu-N(4)-C(16)-C(17)	172.32(12)
C(20)-N(4)-C(16)-C(15)	179.25(14)
Cu-N(4)-C(16)-C(15)	-6.99(17)
N(3)-C(15)-C(16)-N(4)	5.7(2)
C(14)-C(15)-C(16)-N(4)	-174.74(15)
N(3)-C(15)-C(16)-C(17)	-173.58(15)
C(14)-C(15)-C(16)-C(17)	6.0(2)
N(4)-C(16)-C(17)-C(18)	0.3(2)
C(15)-C(16)-C(17)-C(18)	179.59(15)
C(16)-C(17)-C(18)-C(19)	0.9(3)
C(17)-C(18)-C(19)-C(20)	-1.0(3)
C(16)-N(4)-C(20)-C(19)	1.3(2)
Cu-N(4)-C(20)-C(19)	-171.91(13)
C(18)-C(19)-C(20)-N(4)	0.0(3)
Cu-O(1)-C(11A)-O(2)	2.4(2)
Cu-O(1)-C(11A)-C(12A)	-176.70(14)

- 242 Symmetry transformations used to generate equivalent atoms:

256	Table S14. Hydrogen bonds for Cu(bipy) ₂ (CH ₃ COO)](ClO ₄)H ₂ O (2) [Å and $^{\circ}$].						
	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)		
	O(1W)-H(1W1)O(2)	0.88(3)	1.88(3)	2.758(2)	172(3)		
	O(1W)-H(1W2)O(12)	0.87(3)	1.97(3)	2.793(2)	158(3)		
	O(1W)-H(1W2)O(12A)	0.87(3)	2.29(3)	3.107(11)	156(3)		
257 258	Symmetry transformations use	d to generate equi	valent atoms:				
259							
260							
261							
262							
263							
264							
265							
266							
267							
268							
269							
270							
271							
272							
273							