



J. Serb. Chem. Soc. 81 (11) S333–S346 (2016)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

# SUPPLEMENTARY MATERIAL TO Synthesis, characterization, electrochemical studies and X-ray structures of mixed-ligand polypyridyl copper(II) complexes with the acetate

OLUWAFUNMILAYO F. ADEKUNLE<sup>1,2\*</sup>, RAY BUTCHER<sup>1,2</sup>, OLADAPO BAKARE<sup>1,2</sup> and OLUSEGUN A. ODUNOLA<sup>1,3</sup>

<sup>1</sup>Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B.4000, Ogbomoso, Nigeria, <sup>2</sup>Department of Chemistry, Howard University, Washington DC, USA and <sup>3</sup>Department of Chemistry, Hallmark University, Ijebu Itele, Nigeria

J. Serb. Chem. Soc. 81 (11) (2016) 1251–1262

### ANALYTICAL AND SPECTRAL DATA OF 1 AND 2

[*Cu(phen)*<sub>2</sub>(*CH*<sub>3</sub>*COO)*](*ClO*<sub>4</sub>)·2*H*<sub>2</sub>*O* (1). Yield: 30 %; Anal. Calcd. for C<sub>26</sub>H<sub>23</sub>N<sub>4</sub>O<sub>8</sub>ClCu (FW: 618.47): C, 48.59; H, 3.43; N, 9.06 %. Found: C, 48.83; H, 3.16; N, 9.13 %; IR (ATR, cm<sup>-1</sup>):<sup>1</sup> 3382 (*br*), 1587 (*m*), 1428 (*s*), 1314 (*w*); (ClO<sub>4</sub>): 1059 (*vs*), 720 (*m*); UV–Vis (CH<sub>3</sub>CN,  $\lambda_{max}$  / cm<sup>-1</sup> (nm)): 14514 (689), 37175 (269), 43478 (230), 48781 (205);  $\mu_{eff}$  (at 299 K): 1.83  $\mu_{B}$ .

[*Cu(bipy)*<sub>2</sub>(*CH*<sub>3</sub>*COO)*](*ClO*<sub>4</sub>)·*H*<sub>2</sub>*O* (2). Yield: 44 %; Anal. Calcd. for C<sub>22</sub>H<sub>21</sub>N<sub>4</sub>O<sub>7</sub>ClCu: C, 49.80; H, 3.83; N, 10.42 %. Found: C, 49.57; H, 3.59; N, 10.49 %; IR (ATR, cm<sup>-1</sup>):<sup>1</sup> 3399 (*br*), 1571 (*m*), 1441 (*s*), 1319 (*w*); (ClO<sub>4</sub>): 1080 (*vs*), 768 (*m*). UV–Vis (CH<sub>3</sub>CN,  $\lambda_{max}$  / cm<sup>-1</sup> (nm)): 14535 (688), 37037 (270), 44053 (230), 48780 (205);  $\mu_{eff}$  (at 297 K): 1.72  $\mu_{B}$ .

| Compound            | [Cu(phen) <sub>2</sub> (CH <sub>3</sub> COO)](ClO <sub>4</sub> )·2H <sub>2</sub> O | [Cu(bipy) <sub>2</sub> (CH <sub>3</sub> COO)](ClO <sub>4</sub> )·H <sub>2</sub> O |
|---------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| CCDC deposit No.    | 1418811                                                                            | 1418812                                                                           |
| Identification code | shelx                                                                              | shelx                                                                             |
| Color/Shape         | Bluish-green/block                                                                 | Blue/rod                                                                          |
| Chemical formula    | C <sub>26</sub> H <sub>23</sub> ClCuN <sub>4</sub> O <sub>8</sub>                  | C <sub>22</sub> H <sub>21</sub> ClCuN <sub>4</sub> O <sub>7</sub>                 |
| Formula weight      | 618.47                                                                             | 552.42                                                                            |
| Temperature, K      | 100(2)                                                                             | 100(2)                                                                            |
| Wavelength, Å       | 0.71073                                                                            | 0.71073                                                                           |
| Crystal system      | Monoclinic                                                                         | Triclinic                                                                         |
| Space group         | Pn                                                                                 | P-1                                                                               |

TABLE S-I. Crystal data and structural refinement for 1 and 2

\* Corresponding author. E-mail: fnnmy2001@yahoo.com

S333

Available on line at www.shd.org.rs/JSCS/

S334

ADEKUNLE et al.

| TABLE S-I | . Continued |
|-----------|-------------|
|-----------|-------------|

| Unit cell<br>dimensions                | a = 9.3682(6)Å                                            | a = 8.2822(4) Å                           |
|----------------------------------------|-----------------------------------------------------------|-------------------------------------------|
|                                        | b = 8.3029(5) Å                                           | b = 9.4748(4) Å                           |
|                                        | c = 16.8784(10) Å                                         | c = 14.7992(6) Å                          |
|                                        | $\beta = 103 \ 3014(18)^{\circ}$                          | $a = 78729(2)^{\circ}$                    |
|                                        | p 105.501 (10)                                            | $\beta = 82.881(2)^{\circ}$               |
|                                        |                                                           | $p = 85.092(2)^{\circ}$                   |
| Volumo Å3                              | 1277 64(14)                                               | $\gamma = 65.092(2)$<br>1127.00(0)        |
| volume, A <sup>2</sup>                 | 1277.04(14)                                               | 1127.90(9)                                |
| L<br>Demoitry                          | 2<br>1 609                                                | 1 627                                     |
| Density $(1,1,1)$ $1,-3$               | 1.608                                                     | 1.027                                     |
| (calculated), kg m <sup>-5</sup>       | 1.010                                                     | 1 1 40                                    |
| Absorption                             | 1.019                                                     | 1.140                                     |
| coefficient, mm <sup>-1</sup>          |                                                           |                                           |
| F(000)                                 | 634                                                       | 566                                       |
| Crystal size, mm <sup>3</sup>          | 0.300×0.260×0.200                                         | 0.500×0.240×0.200                         |
| <i>o</i> range for data                | 2.292-30.370                                              | 2.20-30.38                                |
| collection, °                          |                                                           |                                           |
| Index ranges                           | <i>−</i> 13<= <i>h</i> <=13, <i>−</i> 11<= <i>k</i> <=11, | -11<= <i>h</i> <=11, -13<= <i>k</i> <=13, |
|                                        | -23<= <i>l</i> <=24                                       | -21<= <i>l</i> <=21                       |
| Reflections                            | 9896                                                      | 58024                                     |
| collected                              |                                                           |                                           |
| Independent                            | 6312 [R(int) = 0.0196]                                    | 6914 [R(int) = 0.0421]                    |
| reflections                            |                                                           |                                           |
| Completeness to                        | 99.3 %                                                    | 100 %                                     |
| theta = $25.500^{\circ}$               |                                                           |                                           |
| Absorption                             | Semi-empirical from equivalents                           | Semi-empirical from equivalents           |
| correction                             |                                                           |                                           |
| Max and min                            | 0.7461 and 0.6516                                         | 0.7461 and 0.6323                         |
| transmission                           | 0.7401 and 0.0510                                         | 0.7401 and 0.0525                         |
| Refinement method                      | Full matrix least squares on $E^2$                        | Full matrix least squares on $F^2$        |
| Dete/mastrainta/                       | 6212/8/270                                                |                                           |
| /manamatana                            | 0312/8/3/9                                                | 0914/08/339                               |
| /parameters                            | 1.070                                                     | 1 092                                     |
| $r^{2}$                                | 1.070                                                     | 1.083                                     |
| $F^2$                                  | $P_1 = 0.0225 \dots P_2 = 0.0772$                         | $P_1 = 0.0257 \dots P_2 = 0.0776$         |
| Final <i>R</i> indices $(L > 2 - (D))$ | R1 = 0.0325, WR2 = 0.0772                                 | R1 = 0.035/, WR2 = 0.07/6                 |
| (1 > 2O(1))                            | <b>D1</b> 0.0277 <b>D2</b> 0.0002                         |                                           |
| <i>R</i> indices (all data)            | R1 = 0.0377, wR2 = 0.0802                                 | R1 = 0.0451, wR2 = 0.0814                 |
| Absolute structure                     | 0.521(12)                                                 | —                                         |
| parameter <sup>2</sup>                 |                                                           |                                           |
| Extinction                             | n/a                                                       |                                           |
| coefficient                            |                                                           |                                           |
| Largest diff. peak                     | 0.601 and -0.278 e.Å <sup>-3</sup>                        | 0.563 and -0.384 e.Å <sup>-3</sup>        |
| and hole                               |                                                           |                                           |

Atom U(eq) х Zу Cu 2292(1) 4985(1) 6297(1) 14(1)2888(2) O(1) 1792(2) 6743(1) 18(1) O(2) 2670(2) 2136(3) 5695(1) 22(1)N(1) 2082(3) 6422(3) 7371(2) 15(1)4921(3) N(2) 4366(4) 6963(2) 15(1)N(3) 2796(3) 6505(3) 5453(2) 15(1)N(4) 5241(3) 267(3) 5589(2) 15(1)C(11A) 2151(4) 1802(3) 6284(2)17(1)C(12A) 1924(5) 80(3) 6503(3) 29(1) 7070(4) C(1) 936(4) 7596(2) 19(1) C(2) 1063(4) 7973(4) 8309(2) 23(1) C(3) 2437(4) 8247(4) 8792(2) 23(1) C(4) 3674(4) 7578(4) 8582(2) 19(1) C(5) 5144(4) 7732(4) 23(1) 9065(2) C(6) 6279(4) 6974(4) 8862(2) 22(1)C(7) 6068(3) 5989(4) 8148(2) 18(1) C(8) 7201(3) 5104(4) 7933(2) 20(1)C(9) 6889(3) 4130(4) 7262(2) 22(1)C(10) 5447(3) 4077(4)6778(2) 20(1)4643(3) 5846(3) 7643(2) C(11) 15(1)C(12) 3432(3) 6649(3) 7864(2) 16(1)C(13) 4077(3)7101(3) 5387(2) 18(1)C(14) 8132(4) 4234(4) 4763(2) 21(1)C(15) 3011(4) 8568(4) 4175(2) 20(1)C(16) 1629(3) 7948(3) 4217(2)16(1)C(17) 288(4) 8283(3) 3629(2) 19(1) -1007(4)7639(4) C(18) 3702(2) 19(1)C(19) -1082(3)6602(3) 4370(2) 16(1)C(20) -2379(3)5868(3) 4481(2) 18(1)C(21) -2324(3)4854(4) 18(1) 5123(2) C(22) -970(3) 4551(4) 5672(2) 19(1) C(23) 215(3) 6243(3) 4946(2) 14(1)C(24) 1589(3) 6920(3) 4871(2) 14(1)Cl(1)7284(1) -404(1)6606(1) 23(1)O(3) 7603(3) 803(4) 6059(2) 41(1)7490(3) O(4) -1975(3)6296(2) 38(1) O(5) 5799(3) -209(3)6682(2) 36(1) O(6) 8281(3) -210(3)7390(2) 36(1) O(1W) 4978(3) 2019(3) 4944(2) 31(1)2583(4) O(2W) 176(3) 7910(2) 33(1) TABLE S-III. Bond lengths (Å) and angles (°) for [Cu(phen)<sub>2</sub>(CH<sub>3</sub>COO)](ClO<sub>4</sub>)·2H<sub>2</sub>O (1) Cu-O(1)1.995(2) O(2)-C(11A)-O(1) 122.3(3) Cu-N(4)2.007(3)O(2)-C(11A)-C(12A) 121.0(3) Cu-N(2)2.009(3) O(1)-C(11A)-C(12A) 116.6(3)

TABLE S-II. Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (10<sup>3</sup> Å<sup>2</sup>) for [Cu(phen)<sub>2</sub>(CH<sub>3</sub>COO)](ClO<sub>4</sub>)·2H<sub>2</sub>O (1). *U*(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor

C(11A)-C(12A)-H(12A)

109.5

2.038(2)

Cu-N(3)

 $\Theta \Theta$ 

| TABLE S-III. | Continued |
|--------------|-----------|
|--------------|-----------|

| Cu–N(1)         | 2.217(3) | C(11A)–C(12A)–H(12B)     | 109.5    |
|-----------------|----------|--------------------------|----------|
| O(1)–C(11A)     | 1.282(4) | H(12A)-C(12A)-H(12B)     | 109.5    |
| O(2)-C(11A)     | 1.236(4) | C(11A) - C(12A) - H(12C) | 109.5    |
| N(1)-C(1)       | 1.332(4) | H(12A)–C(12A)–H(12C)     | 109.5    |
| N(1)-C(12)      | 1.357(4) | H(12B)-C(12A)-H(12C)     | 109.5    |
| N(2) - C(10)    | 1.327(4) | N(1)-C(1)-C(2)           | 123.1(3) |
| N(2) - C(11)    | 1.356(4) | N(1) - C(1) - H(1A)      | 118.5    |
| N(3) - C(13)    | 1.327(4) | C(2)-C(1)-H(1A)          | 118.5    |
| N(3) - C(24)    | 1.361(4) | C(3)-C(2)-C(1)           | 118.8(3) |
| N(4) - C(22)    | 1.329(4) | C(3)-C(2)-H(2A)          | 120.6    |
| N(4) - C(23)    | 1.359(4) | C(1)-C(2)-H(2A)          | 120.6    |
| C(11A) - C(12A) | 1.504(4) | C(2) - C(3) - C(4)       | 119.9(3) |
| C(12A) - H(12A) | 0.9800   | C(2)-C(3)-H(3A)          | 120.0    |
| C(12A)-H(12B)   | 0.9800   | C(4)-C(3)-H(3A)          | 120.0    |
| C(12A) - H(12C) | 0.9800   | C(3) - C(4) - C(12)      | 117.1(3) |
| C(1) - C(2)     | 1.400(5) | C(3) - C(4) - C(5)       | 124.1(3) |
| C(1)-H(1A)      | 0.9500   | C(12)-C(4)-C(5)          | 118.7(3) |
| C(2) - C(3)     | 1.375(5) | C(6) - C(5) - C(4)       | 121.7(3) |
| C(2)-H(2A)      | 0.9500   | C(6)–C(5)–H(5A)          | 119.2    |
| C(3) - C(4)     | 1.403(4) | C(4) - C(5) - H(5A)      | 119.2    |
| C(3)-H(3A)      | 0.9500   | C(5)-C(6)-C(7)           | 121.1(3) |
| C(4) - C(12)    | 1.410(4) | C(5)–C(6)–H(6A)          | 119.5    |
| C(4) - C(5)     | 1.436(5) | C(7)-C(6)-H(6A)          | 119.5    |
| C(5) - C(6)     | 1.346(5) | C(8) - C(7) - C(11)      | 117.7(3) |
| C(5)–H(5A)      | 0.9500   | C(8)-C(7)-C(6)           | 123.4(3) |
| C(6)–C(7)       | 1.432(4) | C(11)-C(7)-C(6)          | 118.9(3) |
| C(6)–H(6A)      | 0.9500   | C(9)-C(8)-C(7)           | 119.5(3) |
| C(7)–C(8)       | 1.406(4) | C(9)–C(8)–H(8A)          | 120.2    |
| C(7)–C(11)      | 1.414(4) | C(7)–C(8)–H(8A)          | 120.2    |
| C(8)–C(9)       | 1.367(5) | C(8)-C(9)-C(10)          | 119.5(3) |
| C(8)–H(8A)      | 0.9500   | C(8)-C(9)-H(9A)          | 120.2    |
| C(9)–C(10)      | 1.409(4) | C(10)-C(9)-H(9A)         | 120.2    |
| C(9)–H(9A)      | 0.9500   | N(2)-C(10)-C(9)          | 121.9(3) |
| C(10)–H(10A)    | 0.9500   | N(2)–C(10)–H(10A)        | 119.0    |
| C(11)–C(12)     | 1.437(4) | C(9)–C(10)–H(10A)        | 119.0    |
| C(13)–C(14)     | 1.392(4) | N(2)-C(11)-C(7)          | 121.9(3) |
| C(13)–H(13A)    | 0.9500   | N(2)-C(11)-C(12)         | 118.2(3) |
| C(14)–C(15)     | 1.381(5) | C(7)-C(11)-C(12)         | 119.8(3) |
| C(14)–H(14A)    | 0.9500   | N(1)-C(12)-C(4)          | 123.0(3) |
| C(15)–C(16)     | 1.410(4) | N(1)-C(12)-C(11)         | 117.2(3) |
| C(15)–H(15A)    | 0.9500   | C(4)-C(12)-C(11)         | 119.7(3) |
| C(16)–C(24)     | 1.402(4) | N(3)–C(13)–C(14)         | 123.3(3) |
| C(16)–C(17)     | 1.437(4) | N(3)–C(13)–H(13A)        | 118.4    |
| C(17)–C(18)     | 1.356(4) | C(14)–C(13)–H(13A)       | 118.4    |
| C(17)–H(17A)    | 0.9500   | C(15)-C(14)-C(13)        | 119.4(3) |
| C(18)–C(19)     | 1.434(4) | C(15)-C(14)-H(14A)       | 120.3    |
| C(18)–H(18A)    | 0.9500   | C(13)-C(14)-H(14A)       | 120.3    |

| TABLE S-III. Continued |            |                     |            |
|------------------------|------------|---------------------|------------|
| C(19)–C(23)            | 1.403(4)   | C(14)–C(15)–C(16)   | 119.2(3)   |
| C(19)–C(20)            | 1.410(4)   | C(14)–C(15)–H(15A)  | 120.4      |
| C(20)–C(21)            | 1.364(5)   | C(16)-C(15)-H(15A)  | 120.4      |
| C(20)-H(20A)           | 0.9500     | C(24)–C(16)–C(15)   | 116.9(3)   |
| C(21)–C(22)            | 1.411(4)   | C(24)–C(16)–C(17)   | 118.9(3)   |
| C(21)–H(21A)           | 0.9500     | C(15)-C(16)-C(17)   | 124.2(3)   |
| C(22)–H(22A)           | 0.9500     | C(18)–C(17)–C(16)   | 121.3(3)   |
| C(23)–C(24)            | 1.437(4)   | C(18)–C(17)–H(17A)  | 119.3      |
| Cl(1)–O(4)             | 1.434(2)   | C(16)–C(17)–H(17A)  | 119.3      |
| Cl(1)–O(5)             | 1.436(3)   | C(17)–C(18)–C(19)   | 121.0(3)   |
| Cl(1)–O(3)             | 1.439(3)   | C(17)–C(18)–H(18A)  | 119.5      |
| Cl(1)–O(6)             | 1.442(3)   | C(19)–C(18)–H(18A)  | 119.5      |
| O(1W)–H(1W1)           | 0.85(2)    | C(23)–C(19)–C(20)   | 116.8(3)   |
| O(1W)–H(1W2)           | 0.84(2)    | C(23)–C(19)–C(18)   | 118.8(3)   |
| O(2W)-H(2W1)           | 0.84(2)    | C(20)–C(19)–C(18)   | 124.4(3)   |
| O(2W)-H(2W2)           | 0.83(2)    | C(21)–C(20)–C(19)   | 119.8(3)   |
| O(1)–Cu–N(4)           | 92.60(10)  | C(21)-C(20)-H(20A)  | 120.1      |
| O(1)–Cu–N(2)           | 92.65(10)  | C(19)-C(20)-H(20A)  | 120.1      |
| N(4)–Cu–N(2)           | 174.75(12) | C(20)–C(21)–C(22)   | 119.7(3)   |
| O(1)–Cu–N(3)           | 156.38(9)  | C(20)–C(21)–H(21A)  | 120.1      |
| N(4)–Cu–N(3)           | 81.81(11)  | C(22)–C(21)–H(21A)  | 120.1      |
| N(2)–Cu–N(3)           | 93.33(11)  | N(4)–C(22)–C(21)    | 121.9(3)   |
| O(1)–Cu–N(1)           | 95.09(9)   | N(4)–C(22)–H(22A)   | 119.1      |
| N(4)–Cu–N(1)           | 100.38(11) | C(21)–C(22)–H(22A)  | 119.1      |
| N(2)–Cu–N(1)           | 79.22(11)  | N(4)–C(23)–C(19)    | 123.3(3)   |
| N(3)–Cu–N(1)           | 108.48(9)  | N(4)–C(23)–C(24)    | 116.3(3)   |
| C(11A)–O(1)–Cu         | 105.61(19) | C(19)–C(23)–C(24)   | 120.4(3)   |
| C(1)-N(1)-C(12)        | 118.0(3)   | N(3)–C(24)–C(16)    | 123.7(3)   |
| C(1)–N(1)–Cu           | 132.8(2)   | N(3)–C(24)–C(23)    | 116.7(3)   |
| C(12)–N(1)–Cu          | 109.27(19) | C(16)–C(24)–C(23)   | 119.6(3)   |
| C(10)-N(2)-C(11)       | 119.4(3)   | O(4)–Cl(1)–O(5)     | 110.43(17) |
| C(10)–N(2)–Cu          | 125.1(2)   | O(4)–Cl(1)–O(3)     | 109.61(19) |
| C(11)–N(2)–Cu          | 115.5(2)   | O(5)–Cl(1)–O(3)     | 109.10(17) |
| C(13)–N(3)–C(24)       | 117.5(3)   | O(4)–Cl(1)–O(6)     | 108.83(16) |
| C(13)–N(3)–Cu          | 130.5(2)   | O(5)-Cl(1)-O(6)     | 109.93(19) |
| C(24)–N(3)–Cu          | 112.00(19) | O(3)-Cl(1)-O(6)     | 108.92(19) |
| C(22)–N(4)–C(23)       | 118.5(3)   | H(1W1)–O(1W)–H(1W2) | 101(3)     |
| C(22)–N(4)–Cu          | 128.3(2)   | H(2W1)–O(2W)–H(2W2) | 104(3)     |
| C(23)–N(4)–Cu          | 113.3(2)   |                     |            |

TABLE S-IV. Anisotropic displacement parameters  $(10^3 \text{ Å}^2)$  for **1**. The anisotropic displacement factor exponent takes the form:  $-2p^2[h^2a^2U^{11} + ... + 2hkabU1^{12}]$ 

| 1    | 1        |          | 1 6      |          | -        |          |
|------|----------|----------|----------|----------|----------|----------|
| Atom | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
| Cu   | 12(1)    | 16(1)    | 13(1)    | 2(1)     | 2(1)     | 0(1)     |
| O(1) | 21(1)    | 15(1)    | 19(1)    | 2(1)     | 5(1)     | 0(1)     |
| O(2) | 20(1)    | 29(1)    | 18(1)    | 2(1)     | 5(1)     | 2(1)     |

Available on line at www.shd.org.rs/JSCS/



| TABLE | S-IV. | Continued |
|-------|-------|-----------|
|-------|-------|-----------|

S338

| Atom   | $U^{11}$ | $U^{22}$ | U <sup>33</sup> | U <sup>23</sup> | $U^{13}$ | $U^{12}$ |
|--------|----------|----------|-----------------|-----------------|----------|----------|
| N(1)   | 16(1)    | 15(1)    | 15(1)           | 2(1)            | 3(1)     | 0(1)     |
| N(2)   | 14(1)    | 17(1)    | 12(1)           | 2(1)            | 0(1)     | 1(1)     |
| N(3)   | 14(1)    | 13(1)    | 16(1)           | -1(1)           | 4(1)     | -1(1)    |
| N(4)   | 14(1)    | 16(1)    | 15(1)           | 1(1)            | 5(1)     | 0(1)     |
| C(11A) | 16(1)    | 18(1)    | 14(1)           | 1(1)            | -1(1)    | 0(1)     |
| C(12A) | 40(2)    | 17(1)    | 30(2)           | 1(1)            | 11(2)    | 0(1)     |
| C(1)   | 21(2)    | 19(1)    | 18(2)           | 5(1)            | 5(1)     | 3(1)     |
| C(2)   | 28(2)    | 22(1)    | 22(2)           | 3(1)            | 12(1)    | 7(1)     |
| C(3)   | 33(2)    | 19(1)    | 17(2)           | 0(1)            | 8(1)     | 5(1)     |
| C(4)   | 27(2)    | 14(1)    | 15(1)           | 3(1)            | 3(1)     | 0(1)     |
| C(5)   | 32(2)    | 18(1)    | 15(1)           | -1(1)           | -2(1)    | -3(1)    |
| C(6)   | 24(2)    | 20(1)    | 17(2)           | 3(1)            | -5(1)    | -4(1)    |
| C(7)   | 17(2)    | 19(1)    | 16(1)           | 3(1)            | 0(1)     | -4(1)    |
| C(8)   | 13(1)    | 26(2)    | 21(2)           | 7(1)            | 0(1)     | -1(1)    |
| C(9)   | 15(1)    | 30(2)    | 23(2)           | 6(1)            | 5(1)     | 3(1)     |
| C(10)  | 16(1)    | 25(2)    | 19(2)           | 1(1)            | 5(1)     | 1(1)     |
| C(11)  | 16(1)    | 14(1)    | 15(1)           | 4(1)            | 2(1)     | -2(1)    |
| C(12)  | 17(1)    | 13(1)    | 16(1)           | 2(1)            | 2(1)     | -1(1)    |
| C(13)  | 14(1)    | 20(1)    | 21(2)           | -1(1)           | 4(1)     | -2(1)    |
| C(14)  | 20(2)    | 21(1)    | 23(2)           | -1(1)           | 9(1)     | -6(1)    |
| C(15)  | 27(2)    | 17(1)    | 19(2)           | 1(1)            | 11(1)    | -4(1)    |
| C(16)  | 21(2)    | 13(1)    | 14(1)           | -2(1)           | 4(1)     | 0(1)     |
| C(17)  | 25(2)    | 16(1)    | 15(1)           | 2(1)            | 1(1)     | 3(1)     |
| C(18)  | 20(2)    | 19(1)    | 16(2)           | 1(1)            | -2(1)    | 2(1)     |
| C(19)  | 14(1)    | 17(1)    | 16(1)           | -3(1)           | 0(1)     | 1(1)     |
| C(20)  | 13(1)    | 20(1)    | 21(2)           | -5(1)           | 1(1)     | 2(1)     |
| C(21)  | 12(1)    | 22(2)    | 22(2)           | -4(1)           | 6(1)     | -2(1)    |
| C(22)  | 17(2)    | 19(1)    | 20(2)           | 2(1)            | 4(1)     | -1(1)    |
| C(23)  | 14(1)    | 13(1)    | 13(1)           | -1(1)           | 2(1)     | 0(1)     |
| C(24)  | 17(1)    | 12(1)    | 14(1)           | -2(1)           | 3(1)     | -1(1)    |
| Cl(1)  | 19(1)    | 24(1)    | 24(1)           | -6(1)           | -2(1)    | 2(1)     |
| O(3)   | 37(2)    | 47(2)    | 37(2)           | 12(1)           | 4(1)     | -1(1)    |
| O(4)   | 29(2)    | 30(1)    | 50(2)           | -16(1)          | -5(1)    | 8(1)     |
| O(5)   | 22(1)    | 41(2)    | 44(2)           | -5(1)           | 7(1)     | 6(1)     |
| O(6)   | 33(2)    | 41(2)    | 26(1)           | -9(1)           | -10(1)   | 3(1)     |
| O(1W)  | 30(1)    | 36(1)    | 27(1)           | 2(1)            | 10(1)    | -5(1)    |
| O(2W)  | 22(1)    | 50(2)    | 27(1)           | -6(1)           | 8(1)     | -8(1)    |

TABLE S-V. Hydrogen coordinates (×14<sup>4</sup>) and isotropic displacement parameters (10<sup>3</sup> Å<sup>2</sup>) for [Cu(phen)<sub>2</sub>(CH<sub>3</sub>COO)](ClO<sub>4</sub>)·2H<sub>2</sub>O (1)

| Atom   | x    | У    | Z    | U(eq) |
|--------|------|------|------|-------|
| H(12A) | 2737 | -580 | 6410 | 43    |
| H(12B) | 998  | -318 | 6165 | 43    |
| H(12C) | 1890 | 16   | 7078 | 43    |
| H(1A)  | -14  | 6910 | 7256 | 23    |

<u>@080</u>

| Atom   | x        | у        | Z        | U(eq)   |
|--------|----------|----------|----------|---------|
| H(2A)  | 216      | 8390     | 8456     | 27      |
| H(3A)  | 2548     | 8889     | 9269     | 27      |
| H(5A)  | 5319     | 8385     | 9540     | 27      |
| H(6A)  | 7237     | 7095     | 9199     | 27      |
| H(8A)  | 8177     | 5183     | 8251     | 24      |
| H(9A)  | 7639     | 3494     | 7124     | 27      |
| H(10Å) | 5244     | 3417     | 6305     | 24      |
| H(13A) | 4930     | 6810     | 5787     | 22      |
| H(14A) | 5175     | 8533     | 4742     | 25      |
| H(15A) | 3099     | 9276     | 3747     | 24      |
| H(17A) | 309      | 8969     | 3182     | 23      |
| H(18A) | -1876    | 7879     | 3303     | 23      |
| H(20A) | -3288    | 6078     | 4110     | 22      |
| H(21A) | -3194    | 4355     | 5201     | 22      |
| H(22A) | -942     | 3834     | 6114     | 23      |
| H(1W1) | 5680(50) | 1460(70) | 5220(40) | 110(30) |
| H(1W2) | 4270(50) | 1700(70) | 5130(40) | 100(20) |
| H(2W1) | 690(50)  | 2550(60) | 7560(30) | 59(17)  |
| H(2W2) | -330(50) | 1760(40) | 7830(30) | 50(15)  |

TABLE S-V. Continued

TABLE S-VI. Torsion angles (°) for[Cu(phen)<sub>2</sub>(CH<sub>3</sub>COO)](ClO<sub>4</sub>)·2H<sub>2</sub>O (**1**)

| Cu–O(1)–C(11A)–O(2)    | -1.0(4)   | C(7)–C(11)–C(12)–C(4)   | 0.2(4)    |
|------------------------|-----------|-------------------------|-----------|
| Cu-O(1)-C(11A)-C(12A)  | 178.4(3)  | C(24)–N(3)–C(13)–C(14)  | 0.7(4)    |
| C(12)-N(1)-C(1)-C(2)   | 0.4(4)    | Cu–N(3)–C(13)–C(14)     | 179.7(2)  |
| Cu-N(1)-C(1)-C(2)      | -178.8(2) | N(3)-C(13)-C(14)-C(15)  | -0.2(5)   |
| N(1)-C(1)-C(2)-C(3)    | 1.8(5)    | C(13)-C(14)-C(15)-C(16) | -0.4(4)   |
| C(1)-C(2)-C(3)-C(4)    | -2.2(5)   | C(14)-C(15)-C(16)-C(24) | 0.5(4)    |
| C(2)-C(3)-C(4)-C(12)   | 0.5(4)    | C(14)-C(15)-C(16)-C(17) | -178.4(3) |
| C(2)-C(3)-C(4)-C(5)    | -177.0(3) | C(24)-C(16)-C(17)-C(18) | 0.7(4)    |
| C(3)-C(4)-C(5)-C(6)    | 175.4(3)  | C(15)-C(16)-C(17)-C(18) | 179.5(3)  |
| C(12)-C(4)-C(5)-C(6)   | -2.1(5)   | C(16)-C(17)-C(18)-C(19) | 0.2(5)    |
| C(4)-C(5)-C(6)-C(7)    | 0.5(5)    | C(17)-C(18)-C(19)-C(23) | -0.9(4)   |
| C(5)-C(6)-C(7)-C(8)    | -176.5(3) | C(17)-C(18)-C(19)-C(20) | -179.0(3) |
| C(5)-C(6)-C(7)-C(11)   | 1.4(4)    | C(23)-C(19)-C(20)-C(21) | -0.5(4)   |
| C(11)-C(7)-C(8)-C(9)   | -1.2(4)   | C(18)-C(19)-C(20)-C(21) | 177.7(3)  |
| C(6)-C(7)-C(8)-C(9)    | 176.7(3)  | C(19)-C(20)-C(21)-C(22) | 0.1(4)    |
| C(7)-C(8)-C(9)-C(10)   | 2.5(5)    | C(23)-N(4)-C(22)-C(21)  | -1.2(5)   |
| C(11)-N(2)-C(10)-C(9)  | -1.0(5)   | Cu-N(4)-C(22)-C(21)     | 179.8(2)  |
| Cu-N(2)-C(10)-C(9)     | 178.0(2)  | C(20)-C(21)-C(22)-N(4)  | 0.7(5)    |
| C(8)-C(9)-C(10)-N(2)   | -1.5(5)   | C(22)-N(4)-C(23)-C(19)  | 0.8(4)    |
| C(10)-N(2)-C(11)-C(7)  | 2.4(4)    | Cu-N(4)-C(23)-C(19)     | 180.0(2)  |
| Cu-N(2)-C(11)-C(7)     | -176.6(2) | C(22)-N(4)-C(23)-C(24)  | -178.2(3) |
| C(10)-N(2)-C(11)-C(12) | -175.3(3) | Cu-N(4)-C(23)-C(24)     | 0.9(3)    |
| Cu-N(2)-C(11)-C(12)    | 5.7(3)    | C(20)-C(19)-C(23)-N(4)  | 0.0(4)    |

TABLE S-VI. Continued

| C(8)–C(7)–C(11)–N(2)  | -1.3(4)   | C(18)-C(19)-C(23)-N(4)  | -178.3(3) |
|-----------------------|-----------|-------------------------|-----------|
| C(6)-C(7)-C(11)-N(2)  | -179.3(3) | C(20)-C(19)-C(23)-C(24) | 179.0(3)  |
| C(8)–C(7)–C(11)–C(12) | 176.3(3)  | C(18)-C(19)-C(23)-C(24) | 0.7(4)    |
| C(6)-C(7)-C(11)-C(12) | -1.7(4)   | C(13)-N(3)-C(24)-C(16)  | -0.6(4)   |
| C(1)-N(1)-C(12)-C(4)  | -2.2(4)   | Cu–N(3)–C(24)–C(16)     | -179.8(2) |
| Cu-N(1)-C(12)-C(4)    | 177.2(2)  | C(13)–N(3)–C(24)–C(23)  | 179.1(2)  |
| C(1)-N(1)-C(12)-C(11) | 175.6(2)  | Cu–N(3)–C(24)–C(23)     | 0.0(3)    |
| Cu–N(1)–C(12)–C(11)   | -5.0(3)   | C(15)-C(16)-C(24)-N(3)  | 0.1(4)    |
| C(3)-C(4)-C(12)-N(1)  | 1.7(4)    | C(17)-C(16)-C(24)-N(3)  | 179.0(3)  |
| C(5)-C(4)-C(12)-N(1)  | 179.4(3)  | C(15)-C(16)-C(24)-C(23) | -179.7(3) |
| C(3)-C(4)-C(12)-C(11) | -176.0(3) | C(17)-C(16)-C(24)-C(23) | -0.8(4)   |
| C(5)-C(4)-C(12)-C(11) | 1.7(4)    | N(4)-C(23)-C(24)-N(3)   | -0.6(4)   |
| N(2)-C(11)-C(12)-N(1) | 0.0(4)    | C(19)-C(23)-C(24)-N(3)  | -179.7(3) |
| C(7)-C(11)-C(12)-N(1) | -177.7(3) | N(4)-C(23)-C(24)-C(16)  | 179.2(3)  |
| N(2)-C(11)-C(12)-C(4) | 177.9(3)  | C(19)-C(23)-C(24)-C(16) | 0.1(4)    |

TABLE S-VII. Hydrogen bonds for  $[Cu(phen)_2(CH_3COO)](ClO_4) \cdot 2H_2O$  (1); symmetry transformations used to generate equivalent atoms: #1 *x*-1, *y*+1, *z*; #2 *x*-1/2, -*y*+1, *z*+1/2; #3 *x*+1, *y*, *z*; #4 *x*, *y*+1, *z*; #5 *x*-1, *y*, *z* 

| D–H···A                   | <i>d</i> (D–H) / Å | <i>d</i> (H…A) / Å | <i>d</i> (D···A) / Å | <(DHA) / ° |
|---------------------------|--------------------|--------------------|----------------------|------------|
| C(2)–H(2A)····O(6)#1      | 0.95               | 2.53               | 3.101(4)             | 119.2      |
| C(2)–H(2A)····O(1W)#2     | 0.95               | 2.59               | 3.153(4)             | 117.9      |
| C(9)–H(9A) ···O(2W)#3     | 0.95               | 2.56               | 3.283(4)             | 133.5      |
| C(10)–H(10A)····O(2)      | 0.95               | 2.62               | 3.243(4)             | 123.6      |
| C(10)–H(10A)····O(1W)     | 0.95               | 2.53               | 3.474(4)             | 169.7      |
| C(13)–H(13A)····N(2)      | 0.95               | 2.68               | 3.177(4)             | 113.5      |
| C(13)–H(13A)····O(4)#4    | 0.95               | 2.56               | 3.302(4)             | 135.0      |
| C(21)-H(21A)····O(1W)#5   | 0.95               | 2.56               | 3.416(4)             | 150.5      |
| $C(22)-H(22A)\cdots O(1)$ | 0.95               | 2.66               | 3.118(4)             | 110.4      |
| O(1W)–H(1W1)····O(3)      | 0.85(2)            | 2.09(3)            | 2.912(4)             | 162(7)     |
| $O(1W)-H(1W2)\cdots O(2)$ | 0.84(2)            | 1.98(4)            | 2.747(4)             | 151(6)     |
| $O(2W)-H(2W1)\cdots O(1)$ | 0.84(2)            | 1.93(2)            | 2.758(3)             | 169(5)     |
| O(2W)-H(2W2)···O(6)#5     | 0.83(2)            | 2.11(3)            | 2.930(4)             | 170(5)     |

TABLE S-VIII. Atomic coordinates (×10<sup>4</sup>) and equivalent isotropic displacement parameters (10<sup>3</sup> Å<sup>2</sup>) for [Cu(bipy)<sub>2</sub>(CH<sub>3</sub>COO)](ClO<sub>4</sub>)H<sub>2</sub>O (**2**). U(eq) is defined as one third of the trace of the orthogonalized  $U^{ij}$  tensor

| Atom   | x        | У        | Ζ       | U(eq) |  |  |  |
|--------|----------|----------|---------|-------|--|--|--|
| Cu     | 5317(1)  | 4840(1)  | 7450(1) | 14(1) |  |  |  |
| Cl(1)  | 339(1)   | -375(1)  | 7208(1) | 21(1) |  |  |  |
| O(11)  | 1427(2)  | -1065(2) | 6565(1) | 36(1) |  |  |  |
| O(12)  | 1148(2)  | 775(2)   | 7437(1) | 42(1) |  |  |  |
| O(13)  | -1104(2) | 209(2)   | 6787(1) | 37(1) |  |  |  |
| O(14)  | -83(3)   | -1404(2) | 8035(1) | 45(1) |  |  |  |
| O(11A) | 1276(12) | -797(13) | 6409(5) | 36(1) |  |  |  |
| O(12A) | 717(15)  | 1053(5)  | 7273(9) | 42(1) |  |  |  |

| Atom                | x                    | v               | Z                                         | U(eq)                                 |
|---------------------|----------------------|-----------------|-------------------------------------------|---------------------------------------|
| O(13A)              | -1371(3)             | -383(14)        | 7122(9)                                   | 37(1)                                 |
| O(14A)              | 729(17)              | -1368(10)       | 8029(5)                                   | 45(1)                                 |
| O(1)                | 3129(1)              | 5531(1)         | 7058(1)                                   | 17(1)                                 |
| O(2)                | 2394(2)              | 4246(2)         | 8442(1)                                   | 30(1)                                 |
| O(1W)               | 2286(2)              | 1305(2)         | 9032(1)                                   | 30(1)                                 |
| N(1)                | 5532(2)              | 3434(1)         | 6597(1)                                   | 14(1)                                 |
| N(2)                | 6868(2)              | 5964(2)         | 6279(1)                                   | 15(1)                                 |
| N(3)                | 6693(2)              | 3667(2)         | 8423(1)                                   | 14(1)                                 |
| N(4)                | 5323(2)              | 6280(1)         | 8251(1)                                   | 15(1)                                 |
| C(1)                | 4781(2)              | 2193(2)         | 6797(1)                                   | 17(1)                                 |
| C(2)                | 4932(2)              | 1227(2)         | 6197(1)                                   | 20(1)                                 |
| C(3)                | 5892(2)              | 1568(2)         | 5356(1)                                   | 20(1)                                 |
| C(4)                | 6635(2)              | 2865(2)         | 5133(1)                                   | 18(1)                                 |
| C(5)                | 6430(2)              | 3790(2)         | 5766(1)                                   | 14(1)                                 |
| C(6)                | 7155(2)              | 5214(2)         | 5584(1)                                   | 15(1)                                 |
| C(7)                | 8065(2)              | 5748(2)         | 4752(1)                                   | 21(1)                                 |
| C(8)                | 8725(2)              | 7078(2)         | 4645(1)                                   | 24(1)                                 |
| C(9)                | 8442(2)              | 7847(2)         | 5356(1)                                   | 22(1)                                 |
| C(10)               | 7498(2)              | 7254(2)         | 6161(1)                                   | $\frac{18(1)}{18(1)}$                 |
| C(11)               | 7313(2)              | 2299(2)         | 8480(1)                                   | 17(1)                                 |
| C(12)               | 8199(2)              | 1609(2)         | 9190(1)                                   | 20(1)                                 |
| C(13)               | 8469(2)              | 2359(2)         | 9867(1)                                   | 21(1)                                 |
| C(14)               | 7840(2)              | 3776(2)         | 9816(1)                                   | 17(1)                                 |
| C(15)               | 6958(2)              | 4400(2)         | 9084(1)                                   | 14(1)                                 |
| C(16)               | 6249(2)              | 5903(2)         | 8955(1)                                   | 14(1)                                 |
| C(17)               | 6513(2)              | 6878(2)         | 9502(1)                                   | 18(1)                                 |
| C(18)               | 5791(2)              | 8266(2)         | 9313(1)                                   | 20(1)                                 |
| C(19)               | 4814(2)              | 8637(2)         | 8598(1)                                   | 20(1)                                 |
| C(20)               | 4604(2)              | 7613(2)         | 8078(1)                                   | 18(1)                                 |
| C(11A)              | 2049(2)              | 5009(2)         | 7699(1)                                   | 18(1)                                 |
| C(12A)              | 301(2)               | 5339(3)         | 7513(2)                                   | 32(1)                                 |
| TABLE S-IX. Bond le | ngths (Å) and angles | (°) for [Cu(bip | y) <sub>2</sub> (CH <sub>3</sub> COO)](Cl | $O_4$ )·H <sub>2</sub> O ( <b>2</b> ) |
| Cu–N(4)             | 1.9750(14)           | O(14A)–Cl       | (1)–O(12A)                                | 109.41(9)                             |
| Cu-O(1)             | 1.9896(12)           | O(11)-Cl(1      | )-O(12A)                                  | 115.7(6)                              |
| Cu-N(1)             | 1.9899(13)           | O(13) - Cl(1)   | O(13)-Cl(1)-O(12)                         |                                       |
| Cu-N(3)             | 2.0422(14)           | O(14) - Cl(1)   | O(14)-Cl(1)-O(12)                         |                                       |
| Cu-N(2)             | 2.1786(14)           | O(13A)-Cl       | (1) - O(12)                               | 126.4(5)                              |
| Cl(1)-O(13)         | 1.4341(11)           | O(11A)–Cl       | (1) - O(12)                               | 107.2(6)                              |
| Cl(1)-O(14)         | 1.4343(11)           | O(14A)–Cl       | (1) - O(12)                               | 93.0(5)                               |
| Cl(1) - O(13A)      | 1.4378(12)           | O(11)-Cl(1      | )-O(12)                                   | 108.89(7)                             |
| Cl(1)-O(11A)        | 1.4367(12)           | O(12A)– $Cl$    | $(1) - \dot{O}(12)$                       | 19.4(5)                               |
| Cl(1)-O(14A)        | 1.4377(12)           | C(11A)-O(       | 1)Cu                                      | 108.47(10)                            |
| Cl(1)-O(11)         | 1.4404(11)           | H(1W1) - O      | (1W) - H(1W2)                             | 104(3)                                |
| Cl(1)–O(12A)        | 1.4382(12)           | C(1) - N(1) -   | -C(5)                                     | 119.38(14)                            |

TABLE S-VIII. Continued

|--|

| Cl(1)–O(12)    | 1.4416(11) | C(1)–N(1)–Cu         | 122.99(11) |
|----------------|------------|----------------------|------------|
| O(1)–C(11A)    | 1.275(2)   | C(5)–N(1)–Cu         | 117.58(11) |
| O(2)–C(11A)    | 1.244(2)   | C(10) - N(2) - C(6)  | 118.56(14) |
| O(1W) - H(1W1) | 0.88(3)    | C(10)–N(2)–Cu        | 129.68(12) |
| O(1W)-H(1W2)   | 0.87(3)    | C(6)–N(2)–Cu         | 111.73(10) |
| N(1) - C(1)    | 1.341(2)   | C(11) - N(3) - C(15) | 118.58(14) |
| N(1)-C(5)      | 1.354(2)   | C(11)–N(3)–Cu        | 128.08(11) |
| N(2)-C(10)     | 1.342(2)   | C(15)–N(3)–Cu        | 113.33(10) |
| N(2)-C(6)      | 1.347(2)   | C(20) - N(4) - C(16) | 119.89(14) |
| N(3)–C(11)     | 1.343(2)   | C(20)–N(4)–Cu        | 124.14(11) |
| N(3)–C(15)     | 1.353(2)   | C(16)–N(4)–Cu        | 115.65(11) |
| N(4)-C(20)     | 1.341(2)   | N(1) - C(1) - C(2)   | 122.50(15) |
| N(4)–C(16)     | 1.345(2)   | N(1)-C(1)-H(1A)      | 118.7      |
| C(1)–C(2)      | 1.383(2)   | C(2)-C(1)-H(1A)      | 118.7      |
| C(1)-H(1A)     | 0.9500     | C(1)-C(2)-C(3)       | 118.26(16) |
| C(2)–C(3)      | 1.387(2)   | C(1)-C(2)-H(2A)      | 120.9      |
| C(2)–H(2A)     | 0.9500     | C(3)–C(2)–H(2A)      | 120.9      |
| C(3)–C(4)      | 1.385(2)   | C(4)-C(3)-C(2)       | 119.69(16) |
| C(3)–H(3A)     | 0.9500     | C(4)-C(3)-H(3A)      | 120.2      |
| C(4)–C(5)      | 1.391(2)   | C(2)-C(3)-H(3A)      | 120.2      |
| C(4)–H(4A)     | 0.9500     | C(3)-C(4)-C(5)       | 119.12(15) |
| C(5)–C(6)      | 1.487(2)   | C(3)-C(4)-H(4A)      | 120.4      |
| C(6)–C(7)      | 1.390(2)   | C(5)-C(4)-H(4A)      | 120.4      |
| C(7)–C(8)      | 1.390(2)   | N(1)-C(5)-C(4)       | 120.99(15) |
| C(7)–H(7A)     | 0.9500     | N(1)-C(5)-C(6)       | 115.88(14) |
| C(8)–C(9)      | 1.379(3)   | C(4)-C(5)-C(6)       | 123.14(14) |
| C(8)–H(8A)     | 0.9500     | N(2)-C(6)-C(7)       | 121.88(15) |
| C(9)–C(10)     | 1.389(2)   | N(2)-C(6)-C(5)       | 115.60(14) |
| C(9)–H(9A)     | 0.9500     | C(7)-C(6)-C(5)       | 122.52(15) |
| C(10)–H(10A)   | 0.9500     | C(8)-C(7)-C(6)       | 118.81(16) |
| C(11)–C(12)    | 1.383(2)   | C(8)-C(7)-H(7A)      | 120.6      |
| C(11)–H(11A)   | 0.9500     | C(6)-C(7)-H(7A)      | 120.6      |
| C(12)-C(13)    | 1.385(3)   | C(9)-C(8)-C(7)       | 119.55(16) |
| C(12)–H(12A)   | 0.9500     | C(9)-C(8)-H(8A)      | 120.2      |
| C(13)-C(14)    | 1.389(2)   | C(7)–C(8)-H(8A)      | 120.2      |
| C(13)–H(13A)   | 0.9500     | C(8)-C(9)-C(10)      | 118.28(16) |
| C(14)-C(15)    | 1.389(2)   | C(8)-C(9)-H(9A)      | 120.9      |
| C(14)–H(14A)   | 0.9500     | C(10)–C(9)–H(9A)     | 120.9      |
| C(15)-C(16)    | 1.479(2)   | N(2)-C(10)-C(9)      | 122.90(16) |
| C(16)–C(17)    | 1.389(2)   | N(2)–C(10)–H(10A)    | 118.6      |
| C(17)–C(18)    | 1.388(2)   | C(9)-C(10)-H(10A)    | 118.6      |
| C(17)–H(17A)   | 0.9500     | N(3)-C(11)-C(12)     | 122.60(16) |
| C(18) - C(19)  | 1.385(3)   | N(3)-C(11)-H(11A)    | 118.7      |
| C(18) - H(18A) | 0.9500     | C(12)-C(11)-H(11A)   | 118.7      |
| C(19) - C(20)  | 1.384(2)   | C(11)-C(12)-C(13)    | 118.76(16) |
| C(19) - H(19A) | 0.9500     | C(11)-C(12)-H(12A)   | 120.6      |
| C(20)–H(20A)   | 0.9500     | C(13)–C(12)–H(12A)   | 120.6      |

| TABLE S-IX. Con | tinued |
|-----------------|--------|
|-----------------|--------|

| C(11A)–C(12A)       | 1.502(3)  | C(12)–C(13)–C(14)      | 119.31(15) |
|---------------------|-----------|------------------------|------------|
| C(12A)–H(12B)       | 0.9800    | C(12)–C(13)–H(13A)     | 120.3      |
| C(12A)–H(12C)       | 0.9800    | C(14) - C(13) - H(13A) | 120.3      |
| C(12A)–H(12D)       | 0.9800    | C(15)-C(14)-C(13)      | 118.80(16) |
| N(4)–Cu–O(1)        | 94.13(5)  | C(15)-C(14)-H(14A)     | 120.6      |
| N(4)-Cu-N(1)        | 174.48(6) | C(13)-C(14)-H(14A)     | 120.6      |
| O(1)–Cu–N(1)        | 89.80(5)  | N(3)-C(15)-C(14)       | 121.94(15) |
| N(4)–Cu–N(3)        | 81.11(5)  | N(3)-C(15)-C(16)       | 114.66(13) |
| O(1)–Cu–N(3)        | 149.08(5) | C(14)-C(15)-C(16)      | 123.40(14) |
| N(1)-Cu-N(3)        | 97.46(5)  | N(4)-C(16)-C(17)       | 121.39(15) |
| N(4)– $Cu$ – $N(2)$ | 96.31(5)  | N(4)-C(16)-C(15)       | 114.87(14) |
| O(1)-Cu-N(2)        | 100.18(5) | C(17)-C(16)-C(15)      | 123.74(14) |
| N(1)-Cu-N(2)        | 79.16(5)  | C(18)-C(17)-C(16)      | 118.68(15) |
| N(3)-Cu- $N(2)$     | 110.70(5) | C(18)–C(17)–H(17A)     | 120.7      |
| O(13)-Cl(1)-O(14)   | 110.03(7) | C(16)–C(17)–H(17A)     | 120.7      |
| O(13)–Cl(1)–O(13A)  | 28.3(5)   | C(19)-C(18)-C(17)      | 119.57(16) |
| O(14)–Cl(1)–O(13A)  | 82.3(5)   | C(19)–C(18)–H(18A)     | 120.2      |
| O(13)-Cl(1)-O(11A)  | 98.3(5)   | C(17)–C(18)–H(18A)     | 120.2      |
| O(14)–Cl(1)–O(11A)  | 121.6(5)  | C(20)-C(19)-C(18)      | 118.79(16) |
| O(13A)–Cl(1)–O(11A) | 109.54(9) | C(20)–C(19)–H(19A)     | 120.6      |
| O(13)–Cl(1)–O(14A)  | 137.1(5)  | C(18)–C(19)–H(19A)     | 120.6      |
| O(14)–Cl(1)–O(14A)  | 27.2(5)   | N(4)-C(20)-C(19)       | 121.67(16) |
| O(13A)-Cl(1)-O(14A) | 109.44(9) | N(4)-C(20)-H(20A)      | 119.2      |
| O(11A)–Cl(1)–O(14A) | 109.55(9) | C(19)–C(20)–H(20A)     | 119.2      |
| O(13)–Cl(1)–O(11)   | 109.48(7) | O(2)-C(11A)-O(1)       | 122.79(16) |
| O(14)–Cl(1)–O(11)   | 109.59(7) | O(2)-C(11A)-C(12A)     | 120.44(16) |
| O(13A)–Cl(1)–O(11)  | 115.8(5)  | O(1)-C(11A)-C(12A)     | 116.76(15) |
| O(11A)–Cl(1)–O(11)  | 13.4(5)   | C(11A)–C(12A)–H(12B)   | 109.5      |
| O(14A)–Cl(1)–O(11)  | 96.2(5)   | C(11A)-C(12A)-H(12C)   | 109.5      |
| O(13)-Cl(1)-O(12A)  | 90.1(5)   | H(12B)–C(12A)–H(12C)   | 109.5      |
| O(14)-Cl(1)-O(12A)  | 119.9(5)  | C(11A)-C(12A)-H(12D)   | 109.5      |
| O(13A)–Cl(1)–O(12A) | 109.40(9) | H(12B)-C(12A)-H(12D)   | 109.5      |
| O(11A)–Cl(1)–O(12A) | 109.49(9) | H(12C)-C(12A)-H(12D)   | 109.5      |
|                     |           |                        |            |

TABLE S-X. Anisotropic displacement parameters  $(10^3 \text{ Å}^2)$  for Cu(bipy)<sub>2</sub>(CH<sub>3</sub>COO)](ClO<sub>4</sub>)·H<sub>2</sub>O (**2**). The anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^2U^{11} + \cdots + 2hkabU^{12}]$ 

| $2\pi l'$ | 140 12   | induo 0 j |          |          |          |          |
|-----------|----------|-----------|----------|----------|----------|----------|
| Atom      | $U^{11}$ | $U^{22}$  | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
| Cu        | 15(1)    | 13(1)     | 14(1)    | -4(1)    | -3(1)    | 1(1)     |
| Cl(1)     | 24(1)    | 22(1)     | 17(1)    | -2(1)    | -4(1)    | -5(1)    |
| O(11)     | 36(1)    | 43(1)     | 29(1)    | -11(1)   | 1(1)     | 5(1)     |
| O(12)     | 58(1)    | 53(1)     | 25(1)    | -12(1)   | -6(1)    | -36(1)   |
| O(13)     | 31(1)    | 34(1)     | 49(1)    | -14(1)   | -18(1)   | 9(1)     |
| O(14)     | 64(2)    | 39(1)     | 25(1)    | 7(1)     | 5(1)     | -14(1)   |
| O(11A)    | 36(1)    | 43(1)     | 29(1)    | -11(1)   | 1(1)     | 5(1)     |
| O(12A)    | 58(1)    | 53(1)     | 25(1)    | -12(1)   | -6(1)    | -36(1)   |

| TIDLE 5 II | eominaea |          |          |          |          |          |
|------------|----------|----------|----------|----------|----------|----------|
| Atom       | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{23}$ | $U^{13}$ | $U^{12}$ |
| O(13A)     | 31(1)    | 34(1)    | 49(1)    | -14(1)   | -18(1)   | 9(1)     |
| O(14A)     | 64(2)    | 39(1)    | 25(1)    | 7(1)     | 5(1)     | -14(1)   |
| O(1)       | 15(1)    | 20(1)    | 14(1)    | -2(1)    | -1(1)    | 0(1)     |
| O(2)       | 42(1)    | 30(1)    | 18(1)    | 6(1)     | -10(1)   | -16(1)   |
| O(1W)      | 36(1)    | 25(1)    | 32(1)    | -10(1)   | -14(1)   | 6(1)     |
| N(1)       | 13(1)    | 14(1)    | 14(1)    | -3(1)    | -2(1)    | -2(1)    |
| N(2)       | 14(1)    | 15(1)    | 17(1)    | -3(1)    | -4(1)    | -1(1)    |
| N(3)       | 14(1)    | 14(1)    | 15(1)    | -3(1)    | -1(1)    | -1(1)    |
| N(4)       | 16(1)    | 13(1)    | 15(1)    | -3(1)    | -2(1)    | 1(1)     |
| C(1)       | 18(1)    | 17(1)    | 16(1)    | -2(1)    | 0(1)     | -4(1)    |
| C(2)       | 23(1)    | 17(1)    | 21(1)    | -5(1)    | -2(1)    | -6(1)    |
| C(3)       | 25(1)    | 20(1)    | 18(1)    | -8(1)    | -3(1)    | -3(1)    |
| C(4)       | 19(1)    | 19(1)    | 15(1)    | -4(1)    | -1(1)    | -2(1)    |
| C(5)       | 13(1)    | 15(1)    | 14(1)    | -3(1)    | -3(1)    | -1(1)    |
| C(6)       | 14(1)    | 14(1)    | 16(1)    | -1(1)    | -4(1)    | -1(1)    |
| C(7)       | 26(1)    | 19(1)    | 17(1)    | -2(1)    | -1(1)    | -3(1)    |
| C(8)       | 27(1)    | 22(1)    | 21(1)    | 4(1)     | 0(1)     | -6(1)    |
| C(9)       | 22(1)    | 17(1)    | 25(1)    | 2(1)     | -7(1)    | -5(1)    |
| C(10)      | 19(1)    | 16(1)    | 22(1)    | -3(1)    | -6(1)    | -3(1)    |
| C(11)      | 17(1)    | 14(1)    | 20(1)    | -4(1)    | -1(1)    | 1(1)     |
| C(12)      | 19(1)    | 16(1)    | 25(1)    | -1(1)    | -2(1)    | 3(1)     |
| C(13)      | 19(1)    | 22(1)    | 19(1)    | 2(1)     | -4(1)    | 2(1)     |
| C(14)      | 18(1)    | 20(1)    | 14(1)    | -2(1)    | -3(1)    | -1(1)    |
| C(15)      | 12(1)    | 14(1)    | 14(1)    | -2(1)    | 1(1)     | -2(1)    |
| C(16)      | 14(1)    | 13(1)    | 14(1)    | -2(1)    | 1(1)     | -1(1)    |
| C(17)      | 19(1)    | 19(1)    | 16(1)    | -5(1)    | -3(1)    | -2(1)    |
| C(18)      | 23(1)    | 18(1)    | 21(1)    | -9(1)    | 0(1)     | -3(1)    |
| C(19)      | 24(1)    | 13(1)    | 22(1)    | -4(1)    | 1(1)     | 1(1)     |
| C(20)      | 19(1)    | 17(1)    | 19(1)    | -2(1)    | -3(1)    | 2(1)     |
| C(11A)     | 19(1)    | 19(1)    | 15(1)    | -5(1)    | -2(1)    | -4(1)    |
| C(12A)     | 16(1)    | 49(1)    | 30(1)    | -6(1)    | 2(1)     | -4(1)    |

TABLE S-X. Continued

S344

TABLE S-XI. Hydrogen coordinates (×10<sup>4</sup>) and isotropic displacement parameters (10<sup>3</sup> Å<sup>2</sup>) for Cu(bipy)<sub>2</sub>(CH<sub>3</sub>COO)](ClO<sub>4</sub>)·H<sub>2</sub>O (**2**)

| Atom   | x        | у        | Z        | U(eq) |
|--------|----------|----------|----------|-------|
| H(1W1) | 2220(40) | 2250(30) | 8850(20) | 47(8) |
| H(1W2) | 1760(40) | 990(30)  | 8640(20) | 50(8) |
| H(1A)  | 4121     | 1970     | 7372     | 21    |
| H(2A)  | 4392     | 353      | 6356     | 24    |
| H(3A)  | 6039     | 914      | 4937     | 24    |
| H(4A)  | 7276     | 3119     | 4554     | 21    |
| H(7A)  | 8232     | 5212     | 4265     | 25    |
| H(8A)  | 9368     | 7455     | 4087     | 29    |
| H(9A)  | 8880     | 8759     | 5296     | 26    |
| H(10A) | 7290     | 7785     | 6650     | 22    |

 $\odot$ 

S345

| Atom   | x    | У    | Ζ     | U(eq) |
|--------|------|------|-------|-------|
| H(11A) | 7136 | 1786 | 8014  | 20    |
| H(12A) | 8616 | 638  | 9214  | 24    |
| H(13A) | 9077 | 1909 | 10361 | 25    |
| H(14A) | 8010 | 4308 | 10273 | 21    |
| H(17A) | 7174 | 6602 | 9996  | 21    |
| H(18A) | 5966 | 8956 | 9672  | 24    |
| H(19A) | 4296 | 9577 | 8466  | 24    |
| H(20A) | 3935 | 7861 | 7587  | 22    |
| H(12B) | -304 | 5767 | 8016  | 48    |
| H(12C) | -184 | 4446 | 7477  | 48    |
| H(12D) | 250  | 6019 | 6925  | 48    |

### TABLE S-XI. Continued

TABLE S-XII. Torsion angles (°) for [Cu(bipy)<sub>2</sub>(CH<sub>3</sub>COO)](ClO<sub>4</sub>)·H<sub>2</sub>O (**2**)

|                     | 8 ( ) [(F   | <i>JJZ</i> ( <i>J</i> )( <i>4</i> ) <i>Z</i> -(- | )           |
|---------------------|-------------|--------------------------------------------------|-------------|
| N(4)-Cu-O(1)-C(11A) | -80.21(11)  | C(3)-C(4)-C(5)-N(1)                              | 0.6(2)      |
| N(1)–Cu–O(1)–C(11A) | 103.66(11)  | C(3)-C(4)-C(5)-C(6)                              | -179.03(15) |
| N(3)–Cu–O(1)–C(11A) | -0.64(17)   | C(10)-N(2)-C(6)-C(7)                             | -0.7(2)     |
| N(2)–Cu–O(1)–C(11A) | -177.38(11) | Cu-N(2)-C(6)-C(7)                                | 177.53(13)  |
| N(4)-Cu-N(1)-C(1)   | 146.8(5)    | C(10)-N(2)-C(6)-C(5)                             | 179.57(14)  |
| O(1)-Cu-N(1)-C(1)   | -77.67(13)  | Cu-N(2)-C(6)-C(5)                                | -2.16(17)   |
| N(3)-Cu-N(1)-C(1)   | 72.18(13)   | N(1)-C(5)-C(6)-N(2)                              | 1.7(2)      |
| N(2)-Cu-N(1)-C(1)   | -178.07(14) | C(4)-C(5)-C(6)-N(2)                              | -178.62(15) |
| N(4)-Cu-N(1)-C(5)   | -35.8(6)    | N(1)-C(5)-C(6)-C(7)                              | -177.99(15) |
| O(1)-Cu-N(1)-C(5)   | 99.69(12)   | C(4)-C(5)-C(6)-C(7)                              | 1.7(2)      |
| N(3)-Cu-N(1)-C(5)   | -110.45(12) | N(2)-C(6)-C(7)-C(8)                              | 1.5(3)      |
| N(2)-Cu-N(1)-C(5)   | -0.71(11)   | C(5)-C(6)-C(7)-C(8)                              | -178.83(16) |
| N(4)-Cu-N(2)-C(10)  | -3.57(15)   | C(6)-C(7)-C(8)-C(9)                              | -1.2(3)     |
| O(1)-Cu-N(2)-C(10)  | 91.79(14)   | C(7)-C(8)-C(9)-C(10)                             | 0.1(3)      |
| N(1)-Cu-N(2)-C(10)  | 179.62(15)  | C(6)-N(2)-C(10)-C(9)                             | -0.4(2)     |
| N(3)-Cu-N(2)-C(10)  | -86.42(15)  | Cu-N(2)-C(10)-C(9)                               | -178.28(12) |
| N(4)-Cu-N(2)-C(6)   | 178.41(11)  | C(8)-C(9)-C(10)-N(2)                             | 0.7(3)      |
| O(1)-Cu-N(2)-C(6)   | -86.23(11)  | C(15)-N(3)-C(11)-C(12)                           | 0.5(2)      |
| N(1)-Cu-N(2)-C(6)   | 1.60(11)    | Cu-N(3)-C(11)-C(12)                              | -178.40(12) |
| N(3)-Cu-N(2)-C(6)   | 95.56(11)   | N(3)-C(11)-C(12)-C(13)                           | -0.5(3)     |
| N(4)-Cu-N(3)-C(11)  | 177.52(15)  | C(11)-C(12)-C(13)-C(14)                          | 0.2(3)      |
| O(1)-Cu-N(3)-C(11)  | 94.37(16)   | C(12)-C(13)-C(14)-C(15)                          | -0.1(3)     |
| N(1)-Cu-N(3)-C(11)  | -7.87(14)   | C(11)-N(3)-C(15)-C(14)                           | -0.4(2)     |
| N(2)-Cu-N(3)-C(11)  | -89.06(14)  | Cu–N(3)–C(15)–C(14)                              | 178.70(12)  |
| N(4)-Cu-N(3)-C(15)  | -1.45(11)   | C(11)-N(3)-C(15)-C(16)                           | 179.18(14)  |
| O(1)-Cu-N(3)-C(15)  | -84.60(14)  | Cu–N(3)–C(15)–C(16)                              | -1.74(16)   |
| N(1)-Cu-N(3)-C(15)  | 173.16(11)  | C(13)-C(14)-C(15)-N(3)                           | 0.2(2)      |
| N(2)–Cu–N(3)–C(15)  | 91.97(11)   | C(13)-C(14)-C(15)-C(16)                          | -179.35(15) |
| O(1)-Cu-N(4)-C(20)  | -32.56(14)  | C(20)-N(4)-C(16)-C(17)                           | -1.4(2)     |
| N(1)-Cu-N(4)-C(20)  | 102.8(6)    | Cu-N(4)-C(16)-C(17)                              | 172.32(12)  |
| N(3)-Cu-N(4)-C(20)  | 178.20(14)  | C(20)–N(4)–C(16)–C(15)                           | 179.25(14)  |
| N(2)-Cu-N(4)-C(20)  | 68.17(14)   | Cu–N(4)–C(16)–C(15)                              | -6.99(17)   |

<u>@080</u>

TABLE S-XII. Continued

S346

| $\begin{array}{c ccccc} O(1)-Cu-N(4)-C(16) & 153.98(11) & N(3)-C(15)-C(16)-N(4) & 5.7(2) \\ N(1)-Cu-N(4)-C(16) & -70.7(6) & C(14)-C(15)-C(16)-N(4) & -174.74(15) \\ N(3)-Cu-N(4)-C(16) & 4.74(11) & N(3)-C(15)-C(16)-C(17) & -173.58(15) \\ N(2)-Cu-N(4)-C(16) & -105.29(12) & C(14)-C(15)-C(16)-C(17) & 6.0(2) \\ C(5)-N(1)-C(1)-C(2) & 2.3(2) & N(4)-C(16)-C(17)-C(18) & 0.3(2) \\ Cu-N(1)-C(1)-C(2) & 179.64(13) & C(15)-C(16)-C(17)-C(18) & 179.59(15) \\ \end{array}$ |                     |             |                         |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|-------------------------|-------------|
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                       | O(1)–Cu–N(4)–C(16)  | 153.98(11)  | N(3)-C(15)-C(16)-N(4)   | 5.7(2)      |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                       | N(1)-Cu-N(4)-C(16)  | -70.7(6)    | C(14)-C(15)-C(16)-N(4)  | -174.74(15) |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                       | N(3)-Cu-N(4)-C(16)  | 4.74(11)    | N(3)-C(15)-C(16)-C(17)  | -173.58(15) |
| $\begin{array}{cccc} C(5)-N(1)-C(1)-C(2) & 2.3(2) & N(4)-C(16)-C(17)-C(18) & 0.3(2) \\ Cu-N(1)-C(1)-C(2) & 179.64(13) & C(15)-C(16)-C(17)-C(18) & 179.59(15) \end{array}$                                                                                                                                                                                                                                                                                                  | N(2)-Cu-N(4)-C(16)  | -105.29(12) | C(14)-C(15)-C(16)-C(17) | 6.0(2)      |
| Cu–N(1)–C(1)–C(2) 179.64(13) C(15)–C(16)–C(17)–C(18) 179.59(15)                                                                                                                                                                                                                                                                                                                                                                                                            | C(5)-N(1)-C(1)-C(2) | 2.3(2)      | N(4)-C(16)-C(17)-C(18)  | 0.3(2)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cu-N(1)-C(1)-C(2)   | 179.64(13)  | C(15)-C(16)-C(17)-C(18) | 179.59(15)  |
| N(1)-C(1)-C(2)-C(3) -0.3(3) $C(16)-C(17)-C(18)-C(19)$ 0.9(3)                                                                                                                                                                                                                                                                                                                                                                                                               | N(1)-C(1)-C(2)-C(3) | -0.3(3)     | C(16)-C(17)-C(18)-C(19) | 0.9(3)      |
| C(1)-C(2)-C(3)-C(4) -1.5(3) $C(17)-C(18)-C(19)-C(20)$ -1.0(3)                                                                                                                                                                                                                                                                                                                                                                                                              | C(1)-C(2)-C(3)-C(4) | -1.5(3)     | C(17)-C(18)-C(19)-C(20) | -1.0(3)     |
| C(2)-C(3)-C(4)-C(5) 1.4(3) $C(16)-N(4)-C(20)-C(19)$ 1.3(2)                                                                                                                                                                                                                                                                                                                                                                                                                 | C(2)-C(3)-C(4)-C(5) | 1.4(3)      | C(16)-N(4)-C(20)-C(19)  | 1.3(2)      |
| C(1)-N(1)-C(5)-C(4) -2.5(2) $Cu-N(4)-C(20)-C(19)$ -171.91(13)                                                                                                                                                                                                                                                                                                                                                                                                              | C(1)-N(1)-C(5)-C(4) | -2.5(2)     | Cu-N(4)-C(20)-C(19)     | -171.91(13) |
| Cu-N(1)-C(5)-C(4) -179.92(12) C(18)-C(19)-C(20)-N(4) 0.0(3)                                                                                                                                                                                                                                                                                                                                                                                                                | Cu-N(1)-C(5)-C(4)   | -179.92(12) | C(18)-C(19)-C(20)-N(4)  | 0.0(3)      |
| C(1)-N(1)-C(5)-C(6) 177.23(14) $Cu-O(1)-C(11A)-O(2)$ 2.4(2)                                                                                                                                                                                                                                                                                                                                                                                                                | C(1)-N(1)-C(5)-C(6) | 177.23(14)  | Cu–O(1)–C(11A)–O(2)     | 2.4(2)      |
| $Cu-N(1)-C(5)-C(6) \qquad -0.23(18) \qquad Cu-O(1)-C(11A)-C(12A) \qquad -176.70(14)$                                                                                                                                                                                                                                                                                                                                                                                       | Cu-N(1)-C(5)-C(6)   | -0.23(18)   | Cu-O(1)-C(11A)-C(12A)   | -176.70(14) |

TABLE S-XIII. Hydrogen bonds for [Cu(bipy)2(CH3COO)](ClO4)·H2O (2)

| D–H····A                      | <i>d</i> (D–H) / Å | <i>d</i> (H…A) / Å | <i>d</i> (D····A) / Å | <(DHA) / ° |
|-------------------------------|--------------------|--------------------|-----------------------|------------|
| O(1W)–H(1W1)····O(2)          | 0.88(3)            | 1.88(3)            | 2.758(2)              | 172(3)     |
| $O(1W) - H(1W2) \cdots O(12)$ | 0.87(3)            | 1.97(3)            | 2.793(2)              | 158(3)     |
| O(1W)–H(1W2)····O(12A)        | 0.87(3)            | 2.29(3)            | 3.107(11)             | 156(3)     |

## REFERENCES

 S. Reinoso, P. Vitoria, L. San Felices, L. Lezama, J. M. Gutierrez-Zorrilla, *Inorg. Chem.* 45 (2006) 108

2. H. D. Flack, Acta Crystallogr., A 39 (1983) 876.

