

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

J. Serb. Chem. Soc. 82 (4) S208-S220 (2017)

SUPPLEMENTARY MATERIAL TO Experimental measurements and modelling of solvent activity and surface tension of binary mixtures of poly(vinyl

pyrrolidone) in water and ethanol

MAJID TAGHIZADEH* and SABER SHEIKHVAND AMIRI

Chemical Engineering Department, Babol Noshirvani University of Technology, P. O. Box 484, Babol 4714871167, Iran

J. Serb. Chem. Soc. 82 (4) (2017) 427-435

TABLE S-I. Measured densities of PVP solutions and parameters of Eq. (1) at various temperatures; the densities are given as mean \pm standard deviation

$T / \circ C$	a	h	C	ARE		$\rho_{\rm exp}$ /	g cm ⁻³		PMSE	\mathbb{R}^2
17 C	и	υ	ι	AKL	w = 0.1	w = 0.2	w = 0.3	w = 0.45	- MMSE	Λ
					K25 + v	vater				
20	0.977	-0.551	1.93	-0.0051	$0.937 \pm$	$0.955 \pm$	$0.976 \pm$	$1.122 \pm$	0.01521	0.9892
					0.001	0.001	0.001	0.001		
25	0.973	-0.530	1.90	-0.0058	$0.935 \pm$	$0.955 \pm$	$0.975 \pm$	$1.121 \pm$	0.01621	0.9878
					0.002	0.001	0.001	0.001		
30	0.972	-0.531	1.89	-0.0052	$0.934 ~ \pm$	$0.953 \pm$	$0.974~\pm$	$1.119 \pm$	0.015340	0.9890
					0.001	0.002	0.002	0.001		
35	0.970	-0.525	1.88	-0.0051	$0.932 \pm$	$0.951 \pm$	$0.972 \pm$	$1.116 \pm$	0.015200	0.9890
					0.002	0.001	0.001	0.001		
40	0.968	-0.524	1.88	-0.0058	$0.930 \pm$	$0.950 \pm$	$0.970 \pm$	$1.115 \pm$	0.01621	0.9878
					0.001	0.001	0.001	0.002		
45	0.967	-0.544	1.92	-0.0057	$0.928 \pm$	$0.947 \pm$	$0.967 \pm$	$1.113 \pm$	0.015950	0.9881
					0.001	0.001	0.001	0.002		
50	0.964	-0.531	1.88	-0.0053	$0.926 \pm$	$0.945 \pm$	$0.965 \pm$	$1.109 \pm$	0.01567	0.9882
					0.001	0.001	0.001	0.001		
55	0.962	-0.525	1.87	-0.0055	$0.924 \pm$	$0.943 ~ \pm$	$0.963 \pm$	$1.106 \pm$	0.015530	0.9883
					0.001	0.001	0.001	0.001		
					K40 + v	vater				
20	0.974	-0.506	1.86	-0.0042	$0.938 \pm$	$0.957 \pm$	$0.981 \pm$	$1.125 \pm$	0.01378	0.9912
					0.001	0.001	0.001	0.001		
25	0.971	-0.499	1.86	-0.0043	$0.936 \pm$	$0.956 \pm$	$0.980 \pm$	$1.125 \pm$	0.01418	0.9909
					0.001	0.001	0.001	0.002		
30	0.972	-0.518	1.88	-0.0045	$0.935 \pm$	$0.954 \pm$	$0.977 \pm$	$1.122 \pm$	0.014390	0.9905
					0.001	0.001	0.001	0.001		

*Corresponding author. E-mail: m_taghizadehfr@yahoo.com

SUPPLEMENTARY MATERIAL

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$T / \circ C$		h	0	ADE		$ ho_{ m exp}$ /	g cm ⁻³		DMCE	D 2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	170	u u	υ	ι	ARE	w = 0.1	w = 0.2	w = 0.3	w = 0.45	- KMSE	Λ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						K40 + v	vater				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	0.968	-0.493	1.83	-0.0045	$0.933 ~ \pm$	$0.953 \pm$	$0.976 \pm$	$1.119 \pm$	0.014370).9903
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.001	0.001	0.001	0.001		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40	0.965	-0.486	1.82	-0.0044	$0.931 \pm$	$0.951 \pm$	$0.974 \pm$	$1.116 \pm$	0.014230).9904
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.001	0.002	0.002	0.001		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	0.963	-0.480	1.80	-0.0044	$0.929 \pm$	$0.949 \pm$	$0.972 \pm$	$1.113 \pm$	0.014100).9905
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0	0.011		1	0 00 40	0.001	0.001	0.002	0.001		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	0.961	-0.486	1.80	-0.0048	$0.927 \pm$	$0.947 \pm$	0.969 ±	$1.110 \pm$	0.014570).9897
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.050	0.496	1.00	0.0040	0.001	0.001	0.002	0.001	0.014570	0007
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	0.959	-0.486	1.80	-0.0049	$0.925 \pm$	$0.945 \pm$	$0.967 \pm$	$1.108 \pm$	0.014570).9897
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.001	0.001	0.002	0.002		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.90	0.(2	2.24	0.0200	$K_{23} + et$	nanoi	0.007	0.004	0.025090	0010
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	0.80	-0.63	2.34	-0.0200	$0.755 \pm$	$0./8/\pm$	$0.80/\pm$	$0.994 \pm$	0.025080).9819
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	0.70	0.60	2 2 1	0.0180	0.001 0.751 \pm	0.001 0.784 \perp	0.001	0.001	0.024400	0822
0.001 0.001 0.001 0.001	23	0.79	-0.00	2.31	-0.0189	$0.731 \pm$	$0.784 \pm$	$0.800 \pm$	$0.993 \pm$	0.024400	0.9832
30 0.79 -0.60 2.31 -0.0190 0.747 + 0.780 + 0.802 + 0.989 + 0.024400.9832	30	0.79	_0.60	2 3 1	_0.0190	0.001 0.747 +	0.001 0.780 +	0.001 0.802 +	0.001	0 024400	0832
	50	0.79	-0.00	2.51	-0.0170	$0.747 \pm$	$0.700 \pm$	$0.002 \pm$	$0.909 \pm$	0.024400	
35 0.78 -0.60 2.30 -0.0200 0.742 + 0.776 + 0.798 + 0.986 + 0.024800 9829	35	0.78	-0.60	2 30	-0.0200	0.000 + 0.742 +	0.002	0.002	0.001	0.024800) 9829
	55	0.70	0.00	2.50	0.0200	0.742 ± 0.001	0.001	0.001	0.001	0.024000	.,02)
40 0.78 -0.59 2.27 -0.0180 0.739 \pm 0.772 \pm 0.795 \pm 0.980 \pm 0.023650.984	40	0.78	-0.59	2.27	-0.0180	$0.739 \pm$	$0.772 \pm$	$0.795 \pm$	$0.980 \pm$	0.023650).9841
0.002 0.001 0.002		01/0	0.000	,	0.0100	0.002	0.001	0.001	0.002	0.020000	
45 0.78 -0.61 2.30 -0.0170 0.737 \pm 0.768 \pm 0.792 \pm 0.977 \pm 0.022650.9853	45	0.78	-0.61	2.30	-0.0170	$0.737 \pm$	0.768 ±	0.792 ±	$0.977 \pm$	0.022650).9853
0.001 0.002 0.001 0.003						0.001	0.002	0.001	0.003		
$50 \qquad 0.78 -0.60 2.28 -0.0170 \qquad 0.733 \pm 0.765 \pm 0.787 \pm 0.971 \pm 0.023720.9836 \pm 0.0170 0.733 \pm 0.765 \pm 0.787 \pm 0.971 \pm 0.023720.9836 \pm 0.0170 0.733 \pm 0.765 \pm 0.787 \pm 0.971 \pm 0.023720.9836 \pm 0.0170 0.733 \pm 0.765 \pm 0.787 \pm 0.971 \pm 0.023720.9836 \pm 0.0170 0.733 \pm 0.765 \pm 0.787 \pm 0.971 \pm 0.023720.9836 \pm 0.0170 0.733 \pm 0.765 \pm 0.787 \pm 0.971 \pm 0.$	50	0.78	-0.60	2.28	-0.0170	$0.733 \pm$	$0.765 \pm$	$0.787 \pm$	$0.971 \pm$	0.023720).9836
0.001 0.001 0.001 0.001						0.001	0.001	0.001	0.001		
$55 \qquad 0.77 -0.61 2.31 -0.0170 \qquad 0.730 \pm 0.761 \pm 0.784 \pm 0.969 \pm 0.023130.98469 \pm 0.02313000000000000000000000000000000000$	55	0.77	-0.61	2.31	-0.0170	$0.730 ~\pm$	$0.761 \pm$	$0.784 \pm$	$0.969 \pm$	0.023130).9846
0.000 0.001 0.001 0.000						0.000	0.001	0.001	0.000		
K40 + ethanol						K40 + et	hanol				
$20 0.723 \ 0.230 \ 0.890 \ -0.0684 0.766 \pm \ 0.774 \pm \ 0.898 \pm \ 1.001 \pm \ 0.041990.953 \pm 0.041990.95900000000000000000000000000000000$	20	0.723	0.230	0.890	-0.0684	$0.766 \pm$	$0.774 \pm$	$0.898 \pm$	$1.001 \pm$	0.041990).9531
0.001 0.001 0.001 0.002						0.001	0.001	0.001	0.002		
$25 0.719 \ 0.245 \ 0.877 \ -0.0713 0.763 \pm \ 0.771 \pm \ 0.897 \pm \ 1.000 \pm \ 0.042930.9518$	25	0.719	0.245	0.877	-0.0713	$0.763 \pm$	$0.771 \pm$	$0.897 \pm$	$1.000 \pm$	0.042930).9518
0.001 0.001 0.001 0.003						0.001	0.001	0.001	0.003		
$30 0.705 \ 0.315 \ 0.770 \ -0.0732 0.756 \pm \ 0.767 \pm \ 0.896 \pm \ 0.997 \pm \ 0.043840.9512$	30	0.705	0.315	0.770	-0.0732	$0.756 \pm$	$0.767 \pm$	$0.896 \pm$	$0.997 \pm$	0.043840).9512
	25	0.702	0.220	0 700	0.0700	0.000	0.001	0.001	0.001	0.040010	0.0510
$35 0.703 \ 0.328 \ 0.728 \ -0.0722 0.754 \pm \ 0.766 \pm \ 0.893 \pm \ 0.992 \pm \ 0.042910.9519$	35	0.703	0.328	0.728	-0.0722	$0.754 \pm$	$0.766 \pm$	$0.893 \pm$	$0.992 \pm$	0.042910).9519
	40	0.702	0.214	0 7 4 2	0.0707	0.001	0.001	0.000	0.001	0.044020	0467
40 0.702 0.314 0.743 -0.0797 0.753 \pm 0.762 \pm 0.891 \pm 0.988 \pm 0.044920.946	40	0.702	0.314	0./43	-0.0/9/	$0.753 \pm$	$0.762 \pm$	$0.891 \pm$	$0.988 \pm$	0.044920).946/
	15	0.600	0.214	0 720	0.0912	0.001	0.002	0.001	0.001	0.045460	0442
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	0.099	0.314	0.730	-0.0813	$0.730 \pm$	$0.738 \pm$	$0.00 / \pm$	0.982 ±	0.043460	1.7443
0.001 0.001 0.001 $0.00250 0.601 0.353 0.660 _0.0820 0.745 ± 0.755 ± 0.885 ± 0.070 ± 0.045550.0449$	50	0.601	0 353	0 660	_0 0820	0.001 0.745 \pm	0.001 0.755 \pm	.001 0.885 ±	0.002 0.070 ±	0.045550	0/19
0.001 0.003 0.00	50	0.091	0.555	0.009	-0.0629	$0.745 \pm$	$0.735 \pm$	$0.000 \pm$	0.979 ±	0.045550	
55 - 0.686 - 0.353 - 0.681 - 0.0841 - 0.740 + 0.750 + 0.881 + 0.976 + 0.045880 - 0.440	55	0.686	0 353	0 681	_0.0841	0.001 0.740 +	0.001	0.003	0.005	0.045880	9440
	55	0.000	5.555	5.001	0.0071	0.000	0.000	$0.001 \pm$	0.003	5.0 15000	

TAGHIZADEH and AMIRI

 η_{exp} / mPa s $T / ^{\circ}\mathrm{C}$ b'c'ď ARE R^2 a'w = 0.1w = 0.2w = 0.3w = 0.45K25 + water 20 $-293 5488 -29874 53494 -1.8 \times 10^{-12}$ $10.5 \pm$ 37.6 109.2 1002 1.00 ± 22.6 0.4 ± 1.5 ± 4.3 25 $-239\ 4500\ -24344\ 43395\ -3.5{\times}10^{-12}$ 91.2 810.2 1.00 10.4 33.9 ± 23.0 ± 0.1 ± 1.5 ± 3.0 $-185\ 3503\ -18857\ 33736\ -0.31{\times}10^{-12}$ 30 9.9 30.6 79.0 646.3 1.00 ± 0.3 ± 1.1 ± 2.5 ± 29.2 $-138\ 2647\ -14243\ 25824\ 2.4{\times}10^{-12}$ 35 9.3 27.6 70.8521.6 1.00 ± 0.2 ± 15.3 ± 1.3 ± 2.5 40 $-107 \ 2081 \ -11220 \ 20508 \ \ 2.2{\times}10^{-12}$ 8.8 23.9 60.7 425.7 1.00 ± 0.2 ± 0.9 ± 1.3 ± 11.0 45 $-83 \quad 1633 \quad -8828 \quad 16368 \quad -0.29 \times 10^{-12} \quad 8.1 \pm$ $54.2~\pm$ $355.7 \pm$ 1.00 21.2 1.00 1.001.00 1.00 1.00 1.00 1.00

TABLE S-II.	Measured	viscosities	of PVP	solutions	and	parameters	of Eq	. (2)	at	various
temperatures;	the viscosi	ties are give	en as mea	$an \pm standa$	ard de	eviation				

						~ ~				
					10	0.2	± 0.5	2.7	7.9	
50	-54	1111	-6108	11870	1.7×10^{-12}	7.7	18.8	50.1	290.9	1.00
						± 0.1	± 0.7	± 1.9	± 6.9	
55	-48	977	-5194	9840	3.3×10^{-12}	7.2	18.0	43.1	236.4	1.00
						± 0.2	± 0.5	± 1.9	± 3.8	
					K40 + w	vater				
20	-371	7074	-39495	71794	-9.7×10 ⁻¹⁰	13.2	38.4	135.2	1357	1.00
						± 0.2	± 2.0	± 3.2	± 28.5	
25	-261	5029	-27988	51272	-1.5×10^{-10}	12.5	34.6	112.3	1005.8	1.00
						± 0.4	± 1.1	± 4.5	± 15.0	
30	-210	4119	-23205	42734	-0.63×10^{-10}	12.0	26.8	90.4	808.0	1.00
						± 0.2	± 2.4	± 2.8	± 15.1	
35	-177	3475	-19573	36080	-0.20×10^{-10}	10.7	23.6	78.0	710.9	1.00
						± 0.3	± 1.1	± 3.3	± 19.8	
40	-117	2349	-13219	24784	-0.98×10^{-10}	9.9	21.7	66.6	521.1	1.00
						± 0.1	± 0.8	± 0.9	± 10.3	
45	-93	1887	-10655	20235	-0.81×10^{-10}	9.1	19.8	60.3	442.3	1.00
						± 0.3	± 0.1	± 2.1	± 11.4	
50	-82	1657	-9256	17461	-8.71×10^{-10}	8.3	18.6	53.2	380.2	1.00
						± 0.1	± 0.6	± 0.8	± 7.0	
55	-66	1347	-7473	14086	-0.75×10^{-10}	7.8	16.9	45.6	310.3	1.00
						± 0.2	± 0.3	± 1.5	± 3.4	
					K25 + etl	nanol				
20	-285	5458	-30095	54301	-1.1×10^{-12}	13.9	37.0	$109.9\pm$	$1025.0 \pm$	1.00
						± 0.2	± 2.0	3.2	30.1	
25	-220	4244	-23462	42930	-0.52×10^{-12}	12.2	33.3	$100.3 \pm$	$850.4 \pm$	1.00
						± 0.4	± 1.1	4.5	16.3	
30	-176	3407	-18803	34581	-2.8×10^{-12}	11.2	29.9	$87.6 \pm$	$700.9 \pm$	1.00
						± 0.2	± 2.1	2.8	15.1	
35	-136	2704	-15159	28334	-0.09×10^{-12}	10.9	24.9	$75.7 \pm$	$592.9 \pm$	1.00

 ± 0.3

 ± 1.1

3.3

19.8

SUPPLEMENTARY MATERIAL

$T / \circ C$	a'	h'	c'	ď	$ARE = \frac{\eta_{exp}}{mPa s}$			R2		
170	u	υ	ι	и	ARE	w = 0.1	w = 0.2	w = 0.3	w = 0.45	π
					K25 + e	thanol				
40	-101	2041	-11388	21506	-0.26×10^{-12}	10.0	23.1	66.4	470.6	1.00
						± 0.1	± 1.0	± 0.9	± 9.5	
45	-87	1748	-9601	17899	-0.2×10^{-12}	9.1	21.3	56.2	386.2	1.00
						± 0.3	± 0.3	± 2.3	± 11.4	
50	-51	1092	-6158	12150	0.58×10 ⁻¹²	8.3	17.8	50.0	300.1	1.00
						± 0.1	± 0.6	± 0.9	± 7.0	
55	-56	1158	-6435	12340	-0.84×10^{-12}	7.9	17.0	45.6	286.7	1.00
						± 0.2	± 0.3	± 1.5	± 4.0	
					K40 + e	thanol				
20	-382	7174	-39190	69001	31×10 ⁻¹³	12.3	37.0 ± 1.5	106.0	1198.0	1.00
						± 0.3		± 4.3	± 36.5	
25	-295	5576	-30373	53665	36×10 ⁻¹³	11.8	33.9	92.5	953.3	1.00
						± 0.1	± 1.5	± 3.0	± 31.3	
30	-241	4571	-24890	44196	-25×10^{-13}	11.2	31.0	83.4	803.0	1.00
						± 0.3	± 1.5	± 2.5	± 29.2	
35	-180	3434	-18699	33612	5.2×10 ⁻¹³	10.0	27.7	74.8	641.7	1.00
						± 0.1	± 1.3	± 2.5	± 15.3	
40	-135	2639	-14537	26577	6.0×10 ⁻¹³	9.6	19.2	65.5	530.3	1.00
						± 0.2	± 0.9	± 1.3	± 10.8	
45	-111	2156	-11650	21105	0.26×10 ⁻¹³	8.8	23.5	56.8	423.1	1.00
						± 0.2	± 0.5	± 2.5	± 7.9	
50	-84	1671	-9134	16840	-5.3×10^{-13}	8.2	22.7	49.6	352.7	1.00
						± 0.1	± 0.7	± 1.9	± 6.9	
55	-61	1232	-6685	12551	2.6×10 ⁻¹³	7.7	18.2	45.6	283.1	1.00
						± 0.2	± 0.5	± 1.9	± 5.5	

TABLE S-II. Continued

Thermodynamic model for solvent activity

A thermodynamic model based on the Eyring absolute rate theory was proposed to calculate the activity of solvents in binary PVP polymer solutions.¹ Generally, measuring the viscosity and density of polymer solutions are much easier than measuring the solvent activity. For this reason, in this model, the viscosity and density of the polymer solution were used to calculate the solvent activity.

According to the Eyring viscosity model, the viscosity of a liquid solution is calculated by the following equation:^{2,3}

$$\ln(\eta v) = \sum_{i} x_i \ln(\eta_i v_i) + \frac{g^{*E}}{RT}$$
(S-1)

where η , v, η_i and v_i are the viscosity, molar volume of the solution, viscosity of pure component *i* and molar volume of pure component *i*, respectively. X_i is the molar fraction of component *i* in the mixture, *T* is the absolute temperature, *R* is

the gas constant and g^{*E} is the excess Gibbs energy of viscous flow required to move the fluid particles from a stable state to an activated state.

There is an equivalence relationship between the excess Gibbs energy (g^*) and the equilibrium excess Gibbs free energy of mixing (g):

$$\frac{g^E}{RT} = \ln(\eta v) - \sum_i x_i \ln(\eta_i v_i)$$
(S-2)

The first and second terms on the right-hand side of Eq. (2) are related to the real viscosity of the solution and the ideal viscosity of the solution, respectively.

In this paper, dimensionless terms were used instead of the real and ideal viscosity as follows:

$$\frac{g^E}{RT} = \frac{(\eta v)}{(\eta_R v_R)} - \sum_i \frac{x_i(\eta_i v_i)}{\eta_R v_R}$$
(S-3)

where η_R and v_R are the viscosity and molar volume of a reference component, respectively. In this work, component 2 was selected as the reference component. Thus:

$$\frac{g^E}{RT} = \frac{(\eta \upsilon)}{(\eta_2 \upsilon_2)} - \sum_{i=1}^2 \frac{x_i(\eta_i \upsilon_i)}{\eta_2 \upsilon_2}$$
(S-4)

$$\frac{g^E}{RT} = \left(\frac{\eta \upsilon}{\eta_2 \upsilon_2}\right) - \left(\frac{x_1 \eta_1 \upsilon_1}{\eta_2 \upsilon_2}\right) - \left(\frac{x_2 \eta_2 \upsilon_2}{\eta_2 \upsilon_2}\right)$$
(S-5)

Hence, the viscosity and density values of components 1 and 2 are required to calculate the excess Gibbs free energy by Eq. (S-5). The density and viscosity of the solutions that were used to verify the model were measured experimentally and fitted by quadratic equations.

On the other hand, activity coefficient of the solvent (γ_1) can be expressed as a function in terms of the excess Gibbs energy:

$$RT\ln\gamma_1 = g^E + (1 - x_1)\frac{\partial g^E}{\partial x_1}$$
(S-6)

$$\ln \gamma_1 = \frac{g^E}{RT} + \frac{(1 - x_1)}{RT} \frac{\partial g^E}{\partial x_1}$$
(S-7)

With respect to the relationship between a_1 (activity of the solvent) and γ_1 (activity coefficient of the solvent) ($a_1 = x_1\gamma_1$), by determining the term $\partial g^E/\partial x_1$ and substituting the term $\partial g^E/\partial x_1$ into Eq. (S-7), one obtains the following relation:

SUPPLEMENTARY MATERIAL

$$\ln a_1 = \left(\frac{\eta \upsilon}{\eta_2 \upsilon_2}\right) - \left(\frac{x_1 \eta_1 \upsilon_1}{\eta_2 \upsilon_2}\right) - \left(\frac{x_2 \eta_2 \upsilon_2}{\eta_2 \upsilon_2}\right) + \frac{(1 - x_1)}{RT} \frac{\partial g^E}{\partial x_1} + \ln x_1 \qquad (S-8)$$

$$\frac{g^{E}}{RT} = \left(\frac{\left(a'+b'w+c'w^{2}+d'w^{3}\right)\left(\frac{m_{1}x_{1}+m_{2}x_{2}}{a+bw+cw^{2}}\right)}{\eta_{2}\upsilon_{2}}\right) - \left(\frac{x_{1}\eta_{1}\upsilon_{1}}{\eta_{2}\upsilon_{2}}\right) - \left(\frac{x_{2}\eta_{2}\upsilon_{2}}{\eta_{2}\upsilon_{2}}\right) \quad (S-9)$$

$$w_{2} = \frac{m_{2}(1-x_{1})}{m_{1}x_{1} + m_{2}(1-x_{1})}$$
$$\ln a_{1} = \left(\frac{(a'+b'w+c'w^{2}+d'w^{3})\left(\frac{m_{1}x_{1}+m_{2}x_{2}}{a+bw+cw^{2}}\right)}{\eta_{2}v_{2}}\right) - \left(\frac{x_{1}\eta_{1}v_{1}}{\eta_{2}v_{2}}\right) - \left(\frac{x_{2}\eta_{2}v_{2}}{\eta_{2}v_{2}}\right) + \frac{(1-x_{1})}{RT}\frac{\partial g^{E}}{\partial x_{1}} + \ln x_{1}$$
(S-10)

This model can predict the solvent activity in binary mixtures by using experimental density and viscosity values.

Thermodynamic model for surface tension

A thermodynamic model based on the Butler Equation⁴ for the prediction of the surface tension of binary polymer solutions is presented. For calculating the surface tension of a polymer solution, it is assumed that one phase is configured at the surface. The chemical potential of component 1 in the bulk of a non-electrolyte binary solution is expressed as follows:

$$\mu_{1b} = \mu_{1b}^0 + RT \ln a_{1b} \tag{S-11}$$

where μ_{1b}^0 and a_{1b} are the standard chemical potential and the activity of component 1 in the bulk phase, and *R* and *T* are the gas constant and temperature, respectively.

The chemical potential of component 1 at the surface phase can be calculated using the following equation:

$$\mu_{1s} = \mu_{1s}^0 + RT \ln a_{1s} - \sigma A_1 \tag{S-12}$$

where μ_{1s}^0 is the standard chemical potential at the surface, and σ and a_{1s} are the surface tension of the solution and the activity of component 1 at the surface phase, respectively, while A_1 is the molar surface area (cm² mol⁻¹) of component 1 in solution.

The following equation is used for the pure components:

TAGHIZADEH and AMIRI

$$\mu_{\rm ls}^0 - \mu_{\rm lb}^0 = \sigma A_{\rm l} \tag{S-13}$$

where A_1 and σ_1 are the molar surface area and surface tension of component 1, respectively.

At equilibrium, the chemical potential of component 1 in the bulk and surface phases are equivalent:

$$\mu_{\rm ls} = \mu_{\rm lb} \tag{S-14}$$

By combining the above equations, the following equation is obtained:

$$\sigma A_{\rm l} = \sigma_{\rm l} A_{\rm l} + RT \ln \frac{a_{\rm ls}}{a_{\rm lb}} \tag{S-15}$$

The activity of component 1 in both the bulk and surface phases is achieved using the activity coefficients:

$$\sigma A_{l} = \sigma_{l} A_{l} + RT \ln \frac{x_{ls} \gamma_{ls}}{x_{lb} \gamma_{lb}}$$
(S-16)

where x_{1b} , x_{1s} , γ_{1b} and γ_{1s} and are the mole fraction of component 1 in the bulk, the mole fraction of component 1 at the surface, the activity coefficient of component 1 in the bulk and the activity coefficient of component 1 at the surface, respectively. Equation (S-16), which is known as the Butler Equation, could be written as the following:⁴

$$\sigma = \sigma_{\rm l} + \frac{RT}{A_{\rm l}} \ln \frac{x_{\rm ls} \,\gamma_{\rm ls}}{x_{\rm lb} \,\gamma_{\rm lb}} \tag{S-17}$$

The molar surface area is determined by the UNIFAC method as follows:

$$A_i = 2.5 \times 10^9 \sum v_k Q_k \tag{S-18}$$

where Q_k and v_k are the UNIFAC parameter and the number of group k, respectively. Here, 2.5×10^9 is a normalization factor.

To calculate the activity of each component at the surface and in the bulk of a binary liquid mixture, the Flory–Huggins Equation⁵ is used:

$$\ln a_1 = \ln \varphi_1 + (1 - \frac{\nu_1}{\nu_2})\varphi_2 + \chi_1 \varphi_2^2$$
 (S-19)

$$\ln a_2 = \ln \varphi_2 + (1 - \frac{\nu_2}{\nu_1})\varphi_1 + \chi_2 \varphi_1^2$$
(S-20)

where a_1 and a_2 are the solvent activity and polymer activity, φ_1 and φ_2 are the volume fraction of the solvent and polymer, v_1 and v_2 are the partial molar volume of the solvent and polymer, respectively, and χ_1 and χ_2 are the interaction parameters between the polymer and the solvent.

A polymer molecule consists of r elements. Theoretically, the volume of a polymer element is equal to the volume of a solvent molecule.⁶ Thus, the volume of one mole of polymer is r times larger than the volume of one mole of solvent:

$$\frac{v_2}{v_1} = r \tag{S-21}$$

The interaction parameter is obtained from the following equation:

$$\chi_1 = \frac{(\delta_1 - \delta_2)^2 v_1}{RT} \tag{S-22}$$

Equation (S-17) can be written for component 1 and 2 according to the following assumptions:

$$A_{l} = A_{2} = A$$

$$\gamma_{ls} = \gamma_{lb} = 1$$
(S-23)

$$(\sigma_{2} - \sigma_{1}) + \frac{RT}{A} \ln \frac{x_{lb}}{x_{2b}} + \frac{RT}{A} \ln \frac{x_{2s}}{x_{ls}} = 0$$

If the first and second terms of Eq. (S-23) are equal to C_{12} , the following equation is obtained:

$$x_{2s} = x_{1s} \exp(-C_{12} \frac{A}{RT})$$
(S-24)

Therefore, the mole fraction of the components at the surface, the activity coefficient at the surface, and finally, the surface tension of the solution are obtained using Eq. (S-15).

TABLE S-III. Activity of water for various solutions of K25 and K40 in water and ethanol at different temperatures and mass fractions; experimental activities are given as the mean \pm standard deviation; *OAARE*: overall average absolute relative error

w	$a_{1 \text{Exp}}^{a}$	$a_{1 \text{Model}}$	RMSE	RE	AARE	w	$a_{1 \text{Exp}}^{a}$	a _{1Model} I	RMSE	RE	AARE
	K2	25-water	(T = 45)	°C)			K40	-water (7	T = 45	°C)	
0.1	0.9999	0.9999		0.0000		0.1	0.9999	0.9999		0.0000	
	± 0.0001						± 0.0001				
0.2	0.9999	0.9990		0.0900		0.2	0.9999	0.9975		0.2400	
	± 0.0001						± 0.0001				
0.3	0.9999	0.9950	0.0078	0.4900	0.51	0.3	0.9999	0.9930 0	0.0092	0.6900	0.65
	± 0.0000						± 0.0000				
0.45	0.9997	0.9850		1.4704		0.45	0.9998	0.9830		1.6803	
	± 0.0003						± 0.0001				

TABLE S-III. Co	ontinu	led
-----------------	--------	-----

w	$a_{1 \mathrm{Exp}}^{a}$	a _{1Model}	RMSE	RE	AARE	w	$a_{1 \text{Exp}}^{a}$	a _{1Model} RMSE	RE	AARE
	K2	5-water	(T = 55)	°C)			K40-	-water $(T = 55)$	°C)	
0.1	0.9999	0.9999		0.0000		0.1	0.9999	0.9999	0.0000	
	± 0.0001						± 0.0001			
0.2	0.9999	0.9998		0.0100		0.2	0.9999	0.9980	0.1900	
	± 0.0001						$\pm \ 0.0000$			
0.3	0.9999	0.9970	0.0056	0.2900	0.35	0.3	0.9999	0.9940 0.0080	0.5900	0.57
	± 0.0001						$\pm \ 0.0000$			
0.45	0.9998	0.9890		1.0802		0.45	0.9998	0.9850	1.4803	
	$\pm \ 0.0002$						± 0.0001			
	K2.	5–ethano	1(T = 45)	5 °C)			K40–	ethanol ($T = 45$	°C)	
0.1	0.9999	0.9999		0.0000		0.1	0.9999	0.9998	0.0100	
	$\pm \ 0.0001$						$\pm \ 0.0001$			
0.2	0.9999	0.9997		0.0200		0.2	0.9999	0.9996	0.0300	
	$\pm \ 0.0001$						$\pm \ 0.0001$			
0.3	0.9999	0.9980	0.0026	0.1900	0.17	0.3	0.9999	0.9986 0.0034	0.1300	0.21
	$\pm \ 0.0000$						$\pm \ 0.0001$			
0.45	0.9998	0.9950		0.4800		0.45	0.9998	0.9931	0.6701	
	± 0.0002						± 0.0002			
	K2.	5–ethano	1(T = 55)	5 °C)			K40–	ethanol ($T = 55$	°C)	
0.1	0.9999	0.9997		0.0200		0.1	0.9999	0.9998	0.0100	
	± 0.0001						± 0.0001			
0.2	0.9999	0.9996		0.0300		0.2	0.9999	0.9997	0.0200	
	$\pm \ 0.0001$						$\pm \ 0.0001$			
0.3	0.9999	0.9988	0.0017	0.1100	0.12	0.3	0.9999	0.9987 0.0032	0.1200	0.19
	$\pm \ 0.0000$						$\pm \ 0.0000$			
0.45	0.9999	0.9967		0.3200		0.45	0.9999	0.9936	0.6300	
	± 0.0001						± 0.0001			
$OA\overline{A}$	$RE = 0.\overline{35}$									

TABLE S-IV. Surface tensions of various solutions of K25 and K40 in water and ethanol at different temperatures and mass fractions; experimental surface tensions are given as the mean \pm standard deviation; *OAARE*: overall average absolute relative error

T ℃	σ _{exp} mN m ⁻¹	$\sigma_{ m model} \ m mN \ m^{-1}$	RE	RMSE	AARE	T °C	σ _{exp} mN m ⁻¹	σ _{model} mN m ⁻¹	RE	RMSE AARE
					w = 0	0.1				
		K25-w	ater					K40-	water	
20	$61.0 \pm$	62.48	-2.426			20	$58.7 \pm$	63.01	-7.342	
	0.4						0.2			
25	$60.9 \pm$	61.76	-1.412			25	$57.6 \pm$	61.85	-7.379	
	0.5						0.4			
30	$60.3 \pm$	61.05	-1.244			30	$57.1 \pm$	60.90	-6.655	
	0.4						0.3			

SUPPLEMENTARY MATERIAL

T °C	σ _{exp} mN m ⁻¹	σ _{model} mN m ⁻¹	RE	RMSE	AARE	T ℃	σ _{exp} mN m ⁻¹	σ _{model} mN m ⁻¹	RE	RMSE	AARE
					w =	0.1					
		K25–w	ater					K40-v	vater		
35	58.4 ± 0.8	60.33	-3.305	1.5120	2.48	35	56.6 ± 0.2	60.10	-6.184	4.2710	7.66
40	57.6 ± 0.8	59.52	-3.333			40	55.6 ± 0.2	59.50	-7.014		
45	57.8 ± 0.2	58.80	-1.730			45	54.5 ± 0.3	58.78	-7.853		
50	56.0 ± 0.8	57.98	-3.536			50	$53.2 \pm$	57.96	-8.947		
55	$55.4 \pm$	56.97	-2.834			55	$51.8 \pm$	56.94	-9.923		
	0.5	K25 of	anol				0.2	K/0 at	hanol		
20	25.0 ±	24.13	3.480			20	24.8 ±	23.97	3.345		
25	$0.4 \\ 24.3 \pm 0.4$	22.93	5.638			25	$0.2 \\ 24.1 \pm 0.2$	23.0	4.564		
30	23.5 ± 0.4	22.16	5.702			30	$\begin{array}{c} 23.4 \pm \\ 0.2 \end{array}$	22.15	5.342		
35	23.1 ± 0.2	21.56	6.667	1.6956	7.09	35	$\begin{array}{c} 22.7 \pm \\ 0.4 \end{array}$	21.47	5.418	1.0316	4.49
40	22.7 ± 0.1	21.18	6.696			40	22.2 ± 0.4	21.06	5.135		
45	22.6 ± 0.1	20.77	8.097			45	21.5 ± 0.3	20.65	3.953		
50	22.5 ± 0.2	20.37	9.467			50	21.2 ± 0.3	20.18	4.811		
55	22.3 ± 0.2	19.85	10.986			55	20.3 ± 0.3	19.61	3.399		
					w =	0.2					
-		K25-w	ater					K40-v	vater		
20	$\begin{array}{c} 58.0 \pm \\ 0.2 \end{array}$	61.29	-5.672			20	57.0 ± 0.2	62.25	-9.210		
25	$57.3 \pm \\ 0.2$	60.55	-5.671			25	$\begin{array}{c} 56.3 \pm \\ 0.2 \end{array}$	60.84	-8.063		
30	$\begin{array}{c} 56.5 \pm \\ 0.2 \end{array}$	59.81	-5.858			30	$\begin{array}{c} 55.8 \pm \\ 0.4 \end{array}$	59.71	-7.007		
35	55.1 ± 0.2	59.08	-7.223	4.0389	7.38	35	55.2 ± 0.2	58.89	-6.684	4.5306	8.32
40	$\begin{array}{c} 53.9 \pm \\ 0.4 \end{array}$	58.24	-8.051			40	$\begin{array}{c} 54.2 \pm \\ 0.4 \end{array}$	58.23	-7.435		
45	$\begin{array}{c} 53.0 \pm \\ 0.2 \end{array}$	57.40	-8.301			45	$\begin{array}{c} 53.1 \pm \\ 0.1 \end{array}$	57.49	-8.267		
50	$\begin{array}{c} 52.0 \pm \\ 0.2 \end{array}$	56.56	-8.769			50	$\begin{array}{c} 51.8 \pm \\ 0.1 \end{array}$	56.64	-9.343		

TABLE S-IV. Continued

T °C	σ _{exp} mN m ⁻¹	σ _{model} mN m ⁻¹	RE	RMSE	AARE	T °C	σ _{exp} mN m ⁻¹	σ _{model} mN m ⁻¹	RE	RMSE	AARE
					<i>w</i> =	0.2					
		K25–v	vater					K40-	water		
55	$50.7 \pm$	55.53	-9.526			55	$50.3 \pm$	55.61	-10.55		
	0.2						0.3				
		K25-et	hanol					K40-e	thanol		
20	$23.5 \pm$ 0.2	23.75	-1.063			20	$23.1 \pm$	23.42	-1.385		
25	$23.2 \pm$	22.57	2.715			25	$22.5 \pm$	22.35	0.666		
	0.3		21,10				0.3	22.00	01000		
30	$22.9~\pm$	21.85	4.585			30	$22.0 \ \pm$	21.55	2.045		
	0.2						0.3				
35	$22.2 \pm$ 0.1	21.29	4.099	1.2760	4.91	35	$21.4 \pm$ 0.2	20.95	2.102	0.4420	1.61
40	22.0 ±	20.90	5.000			40	21.2 ±	20.53	3.160		
	0.2						0.1				
45	$21.8 \pm$	20.51	5.917			45	$20.5 \pm$	20.09	2.000		
	0.3						0.4				
50	21.7 ±	20.03	7.695			50	20.2 ±	19.61	2.920		
	0.2	10.07	10.004				0.4	10.04	1 2 5 4		
55	$21.6 \pm$	19.37	10.324			55	$19.2 \pm$	18.94	1.354		
	0.1				10-	0.2	0.5				
		K25_v	vater		<i>w</i> –	0.5		K40_	water		
20	56.8 +	59.90	-5.457			20	545+	61.38	-12.62		
20	0.4	59.90	-5.457			20	0.2	01.56	-12.02		
25	$56.3 \pm$	59.15	-5.062			25	$54.0 \pm$	59.80	-10.74		
	0.4						0.1				
30	55.2 ±	58.38	-5.760			30	53.5±	58.53	-9.401		
25	0.4	5 7 (0	6 702	(222	6.76	25	0.4		0.000	5 0 1 0 1	0.07
35	$54.0 \pm$	57.62	-6.703	6232	6.76	35	$53.1 \pm$	57.47	-8.229	5.2131	9.86
40	$53.0 \pm$	56.86	_7 283	3		40	52.2 +	56 70	-8 620		
-0	0.2	50.00	7.205	5.		40	0.1	50.70	0.020		
45	52.3 ±	56.00	-7.074			45	51.3 ±	56.00	-9.161		
	0.2						0.2				
50	$50.8 \pm$	55.14	-8.543			50	$50.1 \pm$	55.06	-9.900		
	0.1						0.5				
55	50.0 ±	54.08	-8.160			55	49.0 ±	54.01	-10.22		
	0.1	17.0.5	1 1				0.2				
20	22.0	K25-et	hanol								
20	$22.9 \pm$	23.38	-2.096								
25	0.2	22.20	1 2 2 7								
23	$22.0 \pm$	22.50	1.327								
	0.1					1					

TABLE S-IV. Continued

T °C	σ _{exp} mN m ⁻¹	σ _{model} mN m ⁻¹	RE	RMSE	AARE
w = 0.3					
K25–ethanol					
30	22.3 ± 0.2	21.53	3.452		
35	21.7 ± 0.2	20.95	3.456	1.0423	3.86
40	21.5 ± 0.3	20.53	4.511		
45	21.2 ± 0.1	20.10	5.188		
50	20.9 ± 0.1	19.59	6.267		
55	20.8 ± 0.1	18.97	8.798		
OAARE = 5.69					

TABLE S-IV. Continued

Statistical analysis

1. Relative error

$$RE = \left(\frac{X_{\exp} - X_{cal}}{X_{\exp}}\right) \times 100$$

2. Average relative error

$$ARE = \frac{1}{n} \sum_{i=1}^{n} (RE)$$

3. Average absolute relative error

$$AARE = \frac{1}{n} \sum_{i=1}^{n} \left| RE \right|$$

4. Root mean squared error

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_{exp} - X_{cal})_i^2}$$

5. Standard deviation

$$SD = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

where X_i is the amount of each data, \overline{X} is the average of the data points, and *n* is the number of data points.

TAGHIZADEH and AMIRI

6. Coefficient of determination

$$R^{2} = 1 - \sum_{i=1}^{n} [X_{\exp} - X_{cal}]_{i}^{2} / \sum_{i=1}^{n} [X_{\exp} - \overline{X}]_{i}^{2}$$

,

with:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} [X_{\exp}]_i$$

REFERENCES

- 1. M. Taghizadeh, A. Eliassi, M. Rahbari-Sisakht, J. Appl. Polym. Sci. 96 (2005) 1059
- 2. J. T. Schrodt, R. M. Akel, J. Chem. Eng. Data 34 (1989) 8
- 3. W. Cao, A. Fredenslund, P. Rasmussen, Ind. Eng. Chem. Res. 31 (1992) 2603
- 4. J. A. V. Butler, Proc. R. Soc., A 135 (1932) 348
- 5. E. Egemen, N. Nirmalakhandan, C. Trevizo, Environ. Sci. Technol. 34 (2000) 2596
- 6. W. C. Forsman, *Polymers in Solution: Theoretical Considerations and Newer Methods of Characterization*, Springer, Plenum Press, New York, 1986.