1	SUPPLEMENTARY MATERIAL								
2									
3 4	CALCULATION of POSSIBLE REACTION PATHS of LYNCOMYCIN MOLECULE THROUGH DFT CALCULATION METHOD								
5	Bahar EREN ¹ , Yelda YALCIN GURKAN ^{2*}								
6	¹ Namik Kemal University, Faculty of Agriculture, Tekirdag, Turkey								
7	^{2*} Namik Kemal University, Department of Chemistry, Tekirdag, Turkey								
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $								

8 9

Fig.S1.

1.(HF)	LO	L11	L12	L13	L14	L15	L16	L17
HF _G	-1664.7601891	-1546.7978	-1296.7405972	-1183.4006842	-1128.0491865	-1129.2631697	-1089.9475657	-691.7740044
$\Delta \mathbf{E}$	-1664.210914	-1546.338449	-1296.413543	-1183.085335	-1127.754258	-1128.943211	-1089.659078	-691.486256
$\Delta \mathbf{H}$	-1664.209970	-1546.337505	-1296.412598	-1183.084391	-1127.753314	-1128.942267	-1089.658134	-691.485312
$\Delta \mathbf{G}$	-1664.304025	-1546.421070	-1296.481294	-1183.149224	-1127.815591	-1129.007317	-1089.719628	-691.540662
HFs	-1664.7481708	-1546.805752	-1296.7589023	-1183.4150197	-1128.0693039	-1129.2678652	-1089.9543748	-691.7684783
$\Delta \mathbf{E}$	-1664.200375	-1546.347134	-1296.432527	-1183.100498	-1127.773390	-1128.949412	-1089.667160	-691.482614
$\Delta \mathbf{H}$	-1664.199431	-1546.346190	-1296.431582	-1183.099554	-1127.772446	-1128.948467	-1089.666216	-691.481670
$\Delta \mathbf{G}$	-1664.294424	-1546.430426	-1296.502216	-1183.165530	-1127.835987	-1129.016403	-1089.729858	-691.540446
2.1.(H	LO	L211	L212	L213	L214	L215	L17	
F)								
HF _G	-1664.7601891	-1625.4413989	-1227.2616663	-859.2339033	-745.8969379	-690.5544502	-691.7740044	
$\Delta \mathbf{E}$	-1664.210914	-1624.923847	-1226.744615	-858.939482	-745.614220	-690.289698	-691.486256	
$\Delta \mathbf{H}$	-1664.209970	-1624.922903	-1226.743671	-858.938538	-745.613276	-690.288754	-691.485312	
$\Delta \mathbf{G}$	-1664.304025	-1625.014309	-1226.830082	-859.000051	-745.669921	-690.342874	-691.540662	
HFs	-1664.7481708	-1625.4400089	-1227.2587022	-859.2588196	-745.9157689	-690.569952	-691.7684783	
$\Delta \mathbf{E}$	-1664.200375	-1624.923443	-1226.742842	-858.964651	-745.633264	-690.306194	-691.482614	
$\Delta \mathbf{H}$	-1664.199431	-1624.922498	-1226.741898	-858.963706	-745.632320	-690.305250	-691.481670	
$\Delta \mathbf{G}$	-1664.294424	-1625.012569	-1226.827430	-859.025967	-745.689053	-690.359970	-691.540446	
2.2.(H	LO	L211	L222	L223	L224	L16	L17	
F)								
HF _G	-1664.7601891	-1625.4413989	-1257.4228785	-1144.0846754	-1088.7336272	-1089.9475657	-691.7740044	
$\Delta \mathbf{E}$	-1664.210914	-1624.923847	-1257.127124	-1143.800751	-1088.469290	-1089.659078	-691.486256	
$\Delta \mathbf{H}$	-1664.209970	-1624.922903	-1257.126180	-1143.799807	-1088.468345	-1089.658134	-691.485312	
$\Delta \mathbf{G}$	-1664.304025	-1625.014309	-1257.191843	-1143.860548	-1088.528913	-1089.719628	-691.540662	
HFs	-1664.7481708	-1625.4400089	-1257.4428949	-1144.0964429	-1088.7537095	-1089.9543748	-691.7684783	
$\Delta \mathbf{E}$	-1664.200375	-1624.923443	-1257.147986	-1143.813544	-1088.489232	-1089.667160	-691.482614	
$\Delta \mathbf{H}$	-1664.199431	-1624.922498	-1257.147042	-1143.812600	-1088.488288	-1089.666216	-691.481670	
$\Delta \mathbf{G}$	-1664.294424	-1625.012569	-1257.213839	-1143.874545	-1088.547882	-1089.729858	-691.540446	

Table 1: Energy, enthalpy, entropy, gibbs free energy values for the gaseous phase and aqueous phase of the degraded fragments of Lyncomycin molecule

APT L ₀	L ₁₁	L ₁₂	L ₁₃	L ₁₄	L ₁₅
O ₁₁ -0.806382	O ₁₁ -0.750864	O ₁₁ -0.526494	O ₁₁ -0.860038	O ₁₁ -0.828547	O ₉ -0.228212
O ₁₂ -0.601210	O ₁₂ -0.294258	O ₁₂ -0.619427	O ₁₂ -0.316327	O ₁₂ -0.313591	O ₁₁ -0.258525
O ₁₄ -0.677656	O ₁₄ -0.310899	O ₁₄ -0.660659	O ₁₄ -0.320893	14 O -0.307825	O ₁₃ -0.268234
O ₁₆ -0.689424	O ₁₆ -0.340576	O ₁₆ -0.649637	O ₁₆ -0.319121	15 H 0.000000	S ₁₅ 0.064980
S ₁₈ -0.230684	S ₁₈ -0.175516	S ₁₈ 0.104437	S ₁₈ -0.201040	16 O -0.359063	O ₂₈ -0.239380
N ₂₅ -0.777974	N ₂₅ -0.436045	N ₂₅ -0.543784	N ₂₅ -0.184563	18 S -0.245104	O ₃₃ -0.203297
O ₃₃ -0.667325	O ₃₃ -0.298481	O ₃₃ -0.632524	O ₃₃ -0.363602	31 O -0.360373	
O ₃₆ -0.961545	O ₃₆ -0.815511	O ₃₆ -0.479355			
N ₄₆ -0.667944	N ₄₆ -0.531620				
L ₁₆	L ₁₇	L ₂₁₁	L ₂₁₂	L ₂₁₃	L ₂₁₄
O ₁₁ -0.375313	O ₉ -0.646524	O ₁₁ -0.806102	O ₁₁ -0.494272	O ₁₁ -0.485495	O ₁₁ -0.487155
O ₁₃ -0.360245	O ₁₁ -0.672449	O ₁₂ -0.298240	O ₁₂ -0.237619	O ₁₂ -0.625464	O ₁₂ -0.626757
S ₁₅ -0.227613	O ₁₃ -0.692649	O ₁₄ -0.326231	O ₁₄ -0.246626	O ₁₄ -0.654873	O ₁₄ -0.658295
O ₂₈ -0.402836	O ₂₃ -0.639021	O ₁₆ -0.345171	O ₁₆ -0.232486	O ₁₆ -0.633652	O ₁₆ -0.637287
O ₃₃ -0.345292	O ₂₈ -0.659311	S ₁₈ -0.159014	N ₂₀ -0.298117	N ₂₀ -0.547955	N ₂₀ -0.728199
		N ₂₁ -0.635725	O ₂₈ -0.232444	O ₂₈ -0.622386	O ₂₈ -0.637626
		O ₂₉ -0.282741	O ₃₁ -0.605135	O ₃₁ -0.464787	
		O ₃₂ -0.879534	N ₄₁ -0.431394		
		N ₄₂ -0.647293			
L ₂₁₅	L ₂₂₂	L ₂₂₃	L ₂₂₄		
O ₁₁ -0.770529	O ₁₁ -0.847370	O ₁₁ -0.516818	O ₁₁ -0.836362		
O ₁₂ -0.323676	O ₁₂ -0.595180	$O_{12} = -0.619741$	O ₁₂ -0.308736		
O ₁₄ -0.326129	O ₁₄ -0.625393	O ₁₄ -0.659983	O ₁₄ -0.304284		
O ₁₆ -0.315774	O ₁₆ -0.627928	O ₁₆ -0.643903	O ₁₆ -0.358326		
O ₂₆ -0.373021	S ₁₈ -0.189657	S ₁₈ -0.066985	S ₁₈ -0.247485		
	$\left \begin{array}{ccc}N_{21} & -0.670077\end{array}\right \\ \left \begin{array}{ccc}N_{21} & -0.727635\end{array}\right $	O ₂₇ -0.359047			
	O ₂₉ -0.587428	O ₂₉ -0.646215			
	O ₃₂ -0.749394				

Table 2. Mulliken loads of the heavy atoms of the studied molecules