1	Sunni	omontary	data	for
	Suppi	emeniury	uuiu	jur

2	
3	Redox properties of alkyl-substituted 4-aryl-2,4-dioxobutanoic acids
4	ILIJA N. CVIJETIĆ, TATJANA Ž. VERBIĆ, ^{1,*} BRANKO J. DRAKULIĆ, ² DALIBOR M. STANKOVIĆ,
5	IVAN O. JURANIĆ, ² DRAGAN D. MANOJLOVIĆ ¹ and MIRE ZLOH ³
6	
7	Innovation Center of the Faculty of Chemistry, University of Belgrade, Studentski Trg 16, 11000 Belgrade,
8	Serbia
9	¹ Faculty of Chemistry, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
10	² Department of Chemistry-IChTM, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
1	³ Department of Pharmacy, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, United Kingdom
12	tatjanad@chem.bg.ac.rs
13	

Fig. S1. Chromatogram for the assessment of compound **1** purity, with the tables showing the detector response at

15 three wavelengths

16

Fig. S2. Chromatogram for the assessment of compound **2** purity, with the tables showing the detector response at three wavelengths.

19

Fig. S3. Chromatogram for the assessment of compound **3** purity, with the tables showing the detector response at three wavelengths.

Fig. S4. Chromatogram for the assessment of compound **4** purity, with the tables showing the detector response at three wavelengths.

Fig. S5. Chromatogram for the assessment of compound **5** purity, with the tables showing the detector response at three wavelengths.

Fig. S6. Chromatogram for the assessment of compound **6** purity, with the tables showing the detector response at three wavelengths.

- $\frac{35}{26}$

Fig. S7. Chromatogram for the assessment of compound **7** purity, with the tables showing the detector response at three wavelengths.

Fig. S8. Chromatogram for the assessment of compound **8** purity, with the tables showing the detector response at three wavelengths.

Fig. S9. Chromatogram for the assessment of compound **9** purity, with the tables showing the detector response at three wavelengths.

Fig. S10. Absorption spectra of compound **2** used for K_{a1} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a1} according to Equation 1; $c_2=5.023\times10^{-5}$ M; $\lambda=$ 302.9 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S11. Absorption spectra of compound **2** used for K_{a2} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a2} according to Equation 2; $c_2=5.023 \times 10^{-5}$ M; $\lambda =$ 299.5 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S12. Absorption spectra of compound **3** used for K_{a1} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a1} according to Equation 1; $c_3=4.908\times10^{-5}$ M; $\lambda=$ 305.4 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

- 51
- 62
- 63

Fig. S13. Absorption spectra of compound **3** used for K_{a2} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a2} according to Equation 2; $c_3=4.908\times10^{-5}$ M; $\lambda=$ 250.0 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S14. Absorption spectra of compound **5** used for K_{a1} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a1} according to Equation 1; $c_5=6.021 \times 10^{-5}$ M; $\lambda =$ 312.3 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S15. Absorption spectra of compound **5** used for K_{a2} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a2} according to Equation 2; $c_5=6.021 \times 10^{-5}$ M; $\lambda=$ 305.9 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S16. Absorption spectra of compound **6** used for K_{a1} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a1} according to Equation 1; $c_6=9.014 \times 10^{-5}$ M; $\lambda =$ 306.3 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min. Figure S11.

Fig. S17. Absorption spectra of compound **6** used for K_{a2} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a2} according to Equation 2; $c_6=9.014 \times 10^{-5}$ M; $\lambda=$ 303.7 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S18. Absorption spectra of compound **8** used for K_{a1} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a1} according to Equation 1; $c_8=5.904\times10^{-5}$ M; $\lambda=$ 308.8 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S19. Absorption spectra of compound **8** used for K_{a2} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a2} according to Equation 2; $c_8=5.904 \times 10^{-5}$ M; $\lambda =$ 308.0 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S20. Absorption spectra of compound **9** used for K_{a1} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a1} according to Equation 1; $c_9=6.066\times10^{-5}$ M; $\lambda=$ 293.0 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S21. Absorption spectra of compound **9** used for K_{a2} determination in solutions of different acidity, pH values are indicated; b) Spectrophotometric determination of K_{a2} according to Equation 2; $c_9=6.066\times10^{-5}$ M; $\lambda=$ 296.0 nm; t = 25 °C, I = 0.1 M (NaCl); scan speed 500 nm/min.

Fig. S23. Differential pulse voltammograms of comp. **2-9** in Britton-Robinson buffer at pH 1, pH 5, and pH 10; a) **2**, $c_2 = 4.61 \times 10^{-5}$ M; b) **3**, $c_3 = 6.54 \times 10^{-5}$ M; c) **4**, $c_4 = 4.77 \times 10^{-5}$ M d) **5**, $c_5 = 6.58 \times 10^{-5}$ M; e) **6**, $c_6 = 4.09 \times 10^{-5}$ M; f) **7**, $c_7 = 5.22 \times 10^{-5}$ M; g) **8**, $c_8 = 4.06 \times 10^{-5}$ M; h) **9**, $c_9 = 4.43 \times 10^{-5}$ M; scan rate 13 mV/s, $t=25\pm1$ °C.

Compound 4

Compound 6

Compound 9

- Fig. S 25. LUMO orbitals of H₂A form of compounds **4**, **6** and **9** plotted on isocontour level 0.03.
- 14 15
- Table SI. Energies of FMOs (given in Hartree), and dipoles (given in Debye) for molecular and monoanionic form of compounds **1-9**.

Neutral (H ₂ A)				Anion (HA ⁻)				
НОМО-			HOMO-					
Compour	nd HOMO	LUMO	LUMO	Dipole	HOMO	LUMO	LUMO	Dipole
			gap				gap	
1	-0.3470	0.0367	0.3837	2.7040	-0.3321	0.0625	0.3946	20.1289
2	-0.3359	0.0406	0.3764	2.3366	-0.3274	0.0670	0.3944	20.7147
3	-0.3363	0.0377	0.3740	2.8168	-0.3266	0.0625	0.3891	22.3967
4	-0.3360	0.0394	0.3754	3.2365	-0.3244	0.0641	0.3885	22.8528
5	-0.3299	0.0417	0.3716	2.8786	-0.3213	0.0683	0.3896	23.1538
6	-0.3236	0.0401	0.3638	2.6851	-0.3172	0.0670	0.3842	21.9031
7	-0.3300	0.0403	0.3703	3.3452	-0.3199	0.0641	0.3840	24.8252
8	-0.3196	0.0425	0.3621	3.1584	-0.3129	0.0687	0.3816	24.0766
9	-0.3100	0.0448	0.3548	2.4134	-0.3063	0.0778	0.3840	22.9021

Table SII. Energies of FMOs (given in Hartree), and dipole moments (given in Debye) for radical anion and radical

21 22 23 cation derived from molecular form (H₂A) or monoanionic form (HA⁻) of compounds **1-9**. Energies of α SOMO and αLUMO are shown. **Radical anion from H₂A Radical cation from H₂A**

		SOMO-		D ' 1	00100		SOMO-	Dipole
Compound	SOMO	LUMO	LUMO	Dipole	SOMO	LUMO	LUMO	I · ·
			gap				gap	
1	0.0757	0.2471	0.1713	5.1253	-0.3009	-0.1600	0.1409	2.2888
2	0.0767	0.2475	0.1708	5.6837	-0.2996	-0.1579	0.1417	3.0584
3	0.0756	0.2459	0.1703	6.6132	-0.2989	-0.1576	0.1413	3.3480
4	0.0765	0.2458	0.1693	7.3901	-0.2970	-0.1551	0.1419	2.9073
5	0.0774	0.2465	0.1691	7.7582	-0.2761	-0.1313	0.1449	2.9050
6	0.0766	0.2443	0.1677	7.0045	-0.2975	-0.1555	0.1421	3.4272
7	0.0763	0.2452	0.1690	8.6434	-0.2749	-0.1306	0.1443	3.1645
8	0.0772	0.2461	0.1689	8.8467	-0.2751	-0.1316	0.1435	1.9357
9	0.0784	0.2537	0.1754	8.6062	-0.2532	-0.0821	0.1711	10.3233
	Ra	dical dia	nion from	HA ⁻				
			SOMO-	Disala				
Compound SOMO		LUMO	LUMO	Dipole				
-			gap					
1	0.1658	0.3866	0.2208	12.3478				
2	0.1685	0.3824	0.2138	14.5640				
3	0.1641	0.3836	0.2195	15.5722				
4	0.1645	0.3812	0.2167	15.8690				
5	0.1669	0.3779	0.2109	17.5080				
6	0.1664	0.3836	0.2172	16.0213				
7	0.1631	0.3817	0.2186	18.6586				
8	0.1665	0.3795	0.2130	19.1801				
9	0.1875	0.3529	0.1654	23.1287				

Table SIII. Intercorrelation matrix (*r* values) between oxidation/reduction potentials at pH 1 and at pH 5 and descriptors extracted from QM calculations. Indicator variable (*I*) is also included. 'Molecular' refer to neutral form of compounds; 'anion' refer to anionic form of compounds (deprotonated carboxyl group); 'RA' refer to radical anion/dianion (derived from neutral/anionic form); 'RC' refer to radical cation derived from neutral form.

Eox-pH_1		E _{red} -pH_1	
HOMO molecular	-0.6797	HOMO molecular	0.3250
LUMO molecular	-0.5739	LUMO molecular	0.2916
HOMO-LUMO gap/molecular	0.6876	HOMO-LUMO gap/molecular	-0.3233
Dipole molecular	0.3642	Dipole molecular	-0.6104
SOMO (RC)	-0.6565	SOMO (RA)	0.3298
LUMO (RC)	-0.7924	LUMO (RA)	0.8713
SOMO-LUMO gap/RC	-0.9352	SOMO-LUMO gap/RA	0.9361
Dipole RC	-0.9519	Dipole RA	-0.0503
Ι	-0.7908	Ι	0.5906
Eox-pH_5		E _{red} -pH_5	
HOMO molecular	-0.4092	HOMO anion	0.8213
LUMO molecular	-0.3958	LUMO anion	0.7433
HOMO-LUMO gap/molecular	0.3999	HOMO-LUMO gap/anion	-0.6495
Dipole molecular	0.4117	Dipole molecular	-0.3518
SOMO (RC)	-0.4353	SOMO dianion (RA)	0.6858
LUMO (RC)	-0.6048	LUMO dianion (RA)	-0.6739
SOMO-LUMO gap/cation (RC)	-0.8283	SOMO-LUMO gap/dianion (RA)	-0.6869
Dipole (RC)	-0.9067	Dipole dianion (RA)	0.7311
Ι	-0.5295	Ι	0.9533