

J. Serb. Chem. Soc. 82 (5) S247-S249 (2017)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS

Supplementary material

SUPPLEMENTARY MATERIAL TO

Organic geochemical approach in the identification of oil-type pollutants in water and sediment of the River Ibar

ZORAN MILIĆEVIĆ¹, DRAGAN MARINOVIĆ², GORDANA GAJICA³, MILICA KAŠANIN-GRUBIN³*, VERKA JOVANOVIĆ⁴ and BRANIMIR JOVANČIĆEVIĆ⁵

¹University of Priština, Faculty of Economics, Kolašinska 156, 38220 Kosovska Mitrovica, Serbia, ²Institute of Public Health Kraljevo, Slobodana Penezića 16, 36000 Kraljevo, Serbia, ³University of Beglrade, Institute of Chemistry, Technology and Metallurgy (IChTM), Center of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia, ⁴Singidunum University, Danijelova 32, 11000 Belgrade Serbia and ⁵University of Belgrade, Faculty of Chemistry, Studentski trg 12−16, 11000 Belgrade, Serbia

J. Serb. Chem. Soc. 82 (5) (2017) 593-605

SAMPLING

In this study, the samples of water and sediment of the River Ibar were analyzed. Samples were taken in the vicinity of Kosovska Mitrovica (Zubin Potok (ZP) which is upstream from the town, and 6 km downstream from the dam and Lake Gazivoda, and Veliko Rudare (VR) which is upstream from the town) and Kraljevo (Konaravo, upstream from the town and Ratina, downstream from the town). A total of 8 samples (4 water and 4 sediment samples) were analyzed Sampling locations are shown in Fig. S-1.

Ibar flows in the southern and central part of Serbia. It is the largest tributary of the Western Morava and belongs to the Black Sea watershed. Its source is a karstic spring at the Hajle Mt. in eastern Montenegro, 10 km upstream from Rožaje. The confluece with West Morava River is at 272 km, 4.5 km east of Kraljevo. The watershed of the River Ibar covers an area of 8,059 km². ¹⁸

Water samples were taken using a telescope sampling pole, at distance about 1.5 to 2.0 m from the river bank. Samples were immediately transferred into glass bottles, previously prepared (washed) for this purpose. Surface sediment samples were also taken using a telescope sampling pole, but along the river bank, and transferred into plastic bottles, specifically prepared for this purpose.

S247

^{*}Corresponding author. E-mail: mkasaningrubin@chem.bg.ac.rs

S248 MILIĆEVIĆ et al.

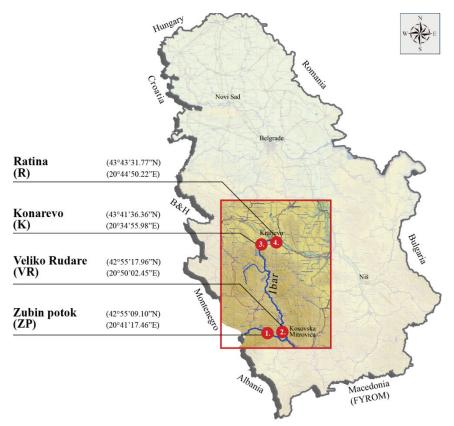


Fig. S-1. Watershed of River Ibar with sampling locations.

TABLE S-I. Peak identification from Figure 3 (m/z 217)

Peak	Compound
1	C_{27} 13 β (H)17 α (H)20(S)-diasterane
2	$C_{27} 13\beta(H)17\alpha(H)20(R)$ -diasterane
3	$C_{27}13\alpha(H)17\beta(H)20(S)$ -diasterane
4	$C_{27} 13\alpha(H)17\beta(H)20(R)$ -diasterane
5a	$C_{28} 13\beta(H)17\alpha(H)20(S)24(S)$ -diasterane
5b	$C_{28} 13\beta(H)17\alpha(H)20(S)24(R)$ -diasterane
6a	$C_{28} 13\beta(H)17\alpha(H)20(R)24(S)$ -diasterane
6b	C_{28} 13 β (H)17 α (H)20(R)24(R)-diasterane
7	$C_{28} 13\alpha(H)17\beta(H)20(S)$ -diasterane + $C_{27} 14\alpha(H)17\alpha(H)20(S)$ -sterane
8	$C_{29} 13\beta(H)17\alpha(H)20(S)$ -diasterane + $C_{27} 14\beta(H)17\beta(H)20(R)$ -sterane
9	$C_{28}13\alpha(H)17\beta(H)20(R)$ -diasterane + $C_{27}14\beta(H)17\beta(H)20(S)$ -sterane
10	$C_{27}14\alpha(H)17\alpha(H)20(R)$ -sterane
11	$C_{29} 13\beta(H)17\alpha(H)20(R)$ -diasterane
12	$C_{29} 13\alpha(H)17\beta(H)20(S)$ -diasterane
13	C_{28} 14 α (H)17 α (H)20(S)-sterane
14	$C_{29} 13\alpha(H)17\beta(H)20(R)$ -diasterane + $C_{28} 14\beta(H)17\beta(H)20(R)$ -sterane

TABLE S-I. Continued

Peak	Compound	_
15	$C_{28} 14\beta(H)17\beta(H)20(S)$ -sterane	_
16	$C_{28} 14\alpha(H)17\alpha(H)20(R)$ -sterane	
17	$C_{29} 14\alpha(H)17\alpha(H)20(S)$ -sterane	
18	$C_{29} 14\beta(H)17\beta(H)20(R)$ -sterane	
19	C_{29} 14 β (H)17 β (H)20(S)-sterane	
20	$C_{29} 14\alpha(H)17\alpha(H)20(R)$ -sterane	

TABLE S-II. Peak indentification from Figure 4 (m/z 191)

Peak	Compound
1	C_{27} 18 α (H),22,29,30-trisnorneohopane, Ts
2	C_{27} 17 α (H),22,29,30-trisnorhopane, Tm
3	$C_{29} 17\alpha(H)21\beta(H)$ -hopane
4	$C_{29} 17\beta(H)21\alpha(H)$ -moretane
5	$C_{30} 17\alpha(H)21\beta(H)$ -hopane
6	$C_{30} 17\beta(H)21\alpha(H)$ -moretane
7	$C_{31} 17\alpha(H)21\beta(H)22(S)$ -hopane
8	$C_{31} 17\alpha(H)21\beta(H)22(R)$ -hopane
9	$C_{32} 17\alpha(H)21\beta(H)22(S)$ -hopan
10	$C_{32} 17\alpha(H)21\beta(H)22(R)$ -hopane
11	$C_{33} 17\alpha(H)21\beta(H)22(S)$ -hopane
12	$C_{33} 17\alpha(H)21\beta(H)22(R)$ -hopane
13	$C_{34} 17\alpha(H)21\beta(H)22(S)$ -hopane
14	$C_{34} 17\alpha(H)21\beta(H)22(R)$ -hopane
15	$C_{35} 17\alpha(H)21\beta(H)22(S)$ -hopane
16	$C_{35} 17\alpha(H)21\beta(H)22(R)$ -hopane