

J. Serb. Chem. Soc. 83 (4) S185–S192 (2018)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Design, synthesis and biological evaluation of organotin(IV) complexes of flumequine and cetirizine

SYED HASSAN IFTIKHAR¹, SYEDA RUBINA GILANI¹, M. BABAR TAJ², AHMAD RAHEEL^{2*}, IMTIAZ-UD-DIN², SYED AHMAD TERMIZI², MUNDHER AL-SHAKBAN³ and HAPIPAH MOHD ALI⁴

 ¹Department of Chemistry, University of Engineering and Technology, Lahore-54890, Pakistan, ²Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan,
³School of Chemistry, University of Manchester, M13 9PL, United Kingdom and ⁴Department of Chemistry, University of Malaya, Kuala Lumpur, 50603, Malaysia

J. Serb. Chem. Soc. 83 (4) (2018) 425-437

Trimethylstannyl 9-*fluoro-6*, 7-*dihydro-5-methyl-1-oxo-1*H, 5H-*pyrido[3,2,1*-ij]*quinoline-2-carboxylate* (1). Quantities used were 0.261 g (0.001 mol) of **HL**₁ and 0.18 g (0.001 mol) of trimethyltin hydroxide in toluene. Yield 72 %; m.p.: 107–110 °C; Anal. Calcd. for C₁₇H₂₀O₃NFSn (FW: 424): C, 48.15; H, 4.75; N, 3.30; Sn, 27.99 %. Found: C, 48.20; H, 4.79; N, 3.31; Sn, 27.90 %; IR (KBr, cm⁻¹); 1641 (COO, asym.), 1464 (COO sym), Δv : 177, 523 (Sn–C), 442 (Sn–O); ¹H-NMR (400 MHz, DMSO-*d*₆, δ / ppm): 9.02 (*s*, 1H, Ar–N–CH), 7.78 (*s*, 1H, HC–CF–Ar), 7.67 (*s*, 1H, CH-CF-Ar), 4.99–4.91 (*m*, 1H, –CH₂–CHN–CH₃), 3.14–3.08 (*m*, 2H, F–Ar–CH₂–CH2), 2.16 (*d*, *J* = 8.5 Hz, 2H, –CH₂–CHN–CH₃), 0.93 (*d*, *J* = 8.2 Hz, 3H, –CH₂–CHN–CH₃), 0.52 (*s*, 9H, H₃C–Sn); ¹³C-NMR (75.45 MHz, DMSO-*d*₆, δ / ppm): 178.1 (Ar-C=O), 161.2 (COO), 148.7, 146.0, 127.6, 127.4, 127.1, 126.9, 126.7 (Ar-C), 122.2, 58.5, 26.4, 22.3, 20.7 (CH₂-flumequine), 15.03 (Sn–CH₃); ¹¹⁹Sn-NMR (129 MHz, DMSO-*d*₆, δ / ppm): –142.6; MS (*m*/*z*): 425 [C₁₇H₂₀O₃NFSn]⁺ (M+1).

Tributylstannyl 9-*fluoro-6*, 7-*dihydro-5-methyl-1-oxo-1*H, 5H-*pyrido[3,2,1-*-ij]*quinoline-2-carboxylate (2)*. Quantities used were 0.261 g (0.001 mol) of **HL**₁ and 0.291 g (0.001 mol) of tributyltin hydroxide in toluene. Yield 66 %; m.p.: 142–145 °C. Anal. Calcd. for C₂₆H₃₈O₃NFSn (MW = 550): C, 56.75; H, 6.96; N, 2.55; Sn, 21.57 %; Found: C, 56.71; H, 6.99; N, 2.59; Sn, 21.60 %. IR (KBr disc, cm⁻¹); v_{asym} (COO) 1648, v_{sym} (COO) 1463, $\Delta v = 185$, 521 (Sn–C), 449 (Sn–O). ¹H-NMR (400 MHz,DMSO-*d*₆, δ / ppm): 9.01 (*s*, 1H, Ar–N–C**H**), 7.77 (*s*, 1H, **H**C–CF–Ar), 7.64 (*s*, 1H, C**H**–CF–Ar), 4.91–4.87 (*m*, 1H, –CH₂–C**H**N–CH₃),

^{*} Corresponding author. E-mail: ahmadraheel001@gmail.com

IFTIKHAR et al

3.10–3.06 (*m*, 2H, F–Ar–CH₂–CH₂), 2.16 (*d*, J = 8.5 Hz, 2H, –CH₂–CHN–CH₃), 0.93 (*d*, J = 8.2 Hz, 3H, –CH₂–CHN–CH₃), 1.53–1.27 (*m*, 18H, CH₂, Bu), 0.72– –0.68 (*m*, 9H, H₃C of Bu); ¹³C-NMR (75.45 MHz, DMSO-*d*₆, δ / ppm): 176.5 (Ar-C=O), 163.7 (COO), 148.2, 146.0, 127.3, 127.1, 126.8, 126.5, 126.3 (Ar-C), 122.1, 58.5, 46.4, 26.2, 25.3, 22.1, 20.3 (CH₂-flumequine and Bu), 16.23 (H₃C of Bu). ¹¹⁹Sn-NMR (129 MHz, DMSO-*d*₆, δ / ppm): –119.6. (*m*/*z*) (M+1) peak [C₂₆H₃₈O₃NFSn]⁺ (551).

Triphenylstannyl 9-*fluoro*-6,7-*dihydro*-5-*methyl*-1-oxo-1H,5H-*pyrido*[3,2,1--ij]*quinoline*-2-*carboxylate* (3). Quantities used were 0.261 g (0.001 mol) of **HL**₁ and 0.367 g (0.001 mol) of triphenyltin hydroxide in toluene. Yield 68 %; m.p.: 161–163 °C. Anal. Calcd. for C₃₂H₂₆O₃NFSn (MW = 611): C, 62.98; H, 4.29; N, 2.30 %; Found: C, 62.94; H, 4.29; N, 2.31 %. IR (KBr disc, cm⁻¹): *v*_{asym}(COO) 1685, *v*_{sym}(COO) 1432, Δv = 253, 519 (Sn–C), 446 (Sn–O). ¹H-NMR (400 MHz, DMSO-*d*₆, δ / ppm): 8.97 (*s*, 1H, Ar–N–CH), 7.76 (*s*, 1H, HC–CF–Ar), 7.64 (*s*, 1H, CH–CF–Ar), 7.59–7.32 (*m*, 15H, Ph–Sn), 4.95–4.87 (*m*, 1H, –CH₂–CHN–CH₃), 3.12–3.07 (*m*, 2H, F–Ar–CH₂–CH2, 2.16 (*d*, *J* = 8.5 Hz, 2H, –CH₂–CHN–CH₃), 0.93 (*d*, *J* = 8.2 Hz, 3H, –CH₂–CHN–CH₃); ¹³C-NMR (75.45 MHz, DMSO-*d*₆, δ / ppm): 171.1 (Ar-C=O), 163.2 (COO), 148.1, 145.7, 131.4, 133.8, 133.3, 132.9.132.2, 127.6, 127.4, 127.1, 126.9, 126.7 (Ar-C), 122.2, 58.0, 26.4, 22.3, 20.2 (CH₂-flumequine). ¹¹⁹Sn-NMR(129 MHz, DMSO-*d*₆, δ / ppm): –35.2. (*m*/*z*) (M+1) peak [C₃₂H₂₆O₃NFSn]⁺ (612).

*Trimethylstannyl 2-[2-[4-[(4-chlorophenyl)phenylmethyl]piperazin-1-yl]eth*oxy]acetate (4). Quantities used were 0.461 g (0.001 mol) of **HL**₂ and 0.18 g (0.001 mol) of trimethyltin hydroxide in toluene. Yield 65 %; m.p.: 150–153 °C. Anal. Calcd. for C₂₄H₃₃O₃N₂ClSn (MW = 552): C, 52.25; H, 6.03; N, 5.08; Cl, 6.43 Sn, 21.52 %; Found: C, 52.30; H, 6.05; N, 5.10; Cl, 6.40; Sn, 21.50 %. IR (KBr disc, cm⁻¹); v_{asym} (COO) 1642, v_{sym} (COO) 1466, $\Delta v = 176$, 522 (Sn–C), 447 (Sn–O).¹H-NMR (400 MHz,DMSO-d₆ δ / ppm): 7.60–7.54 (*m*, 4H, Cl-Ar), 7.48–7.40 (*m*, 5H, Ar), 5.09 (*s*, 1H, Ar(N)CH–CCl–Ar), 4.15 (*s*, 2H, –O–H₂C–COO), 3.82 (*t*, *J* = 6.7 Hz, 2H, O–CH₂–CH₂–N), 3.68 (*t*, *J* = 6.4 Hz, 2H, O–CH₂–CH₂–N), 3.47–3.41 (*m*, 4H, N–CH₂CH₂–N), 3.37–3.31 (*m*, 4H, N–CH₂CH₂–N), 0.56 (s, 9H, H₃C–Sn); ¹³C-NMR (75.45 MHz, DMSO-d₆, δ / ppm): 173.8 (COO), 134.9, 133.7, 132.8, 130.5.130.2, 129.9, 129.6, 128.0, 127.8, 127.6, 127.4, 127.2 (Ar-C), 74.5, 66.7, 63.5, 56.2, 48.4, 48.2, 47.9, 47.7, 13.5 (H₃C-Sn). ¹¹⁹Sn-NMR DMSO-d₆, δ / ppm): –101.6. (*m*/*z*) (M+1) peak [C₂₄H₃₃O₃N₂ClSn]⁺ (553), (M+2) peak [C₂₄H₃₃O₃N₂ClSn]⁺ (554).

Tributylstannyl 2-[2-[4-[(4-chlorophenyl)phenylmethyl]piperazin-1-yl]ethoxy]acetate (5). Quantities used were 0.461 g (0.001 mol) of **HL**₂ and 0.291 g (0.001 mol) of tributyltin hydroxide in toluene. Yield 68 %; m.p. 137–140 °C. Anal. Calcd. for $C_{33}H_{51}O_3N_2ClSn$ (MW = 678): C, 58.45; H, 7.60; N, 4.15; Cl, 5.25 Sn, 17.50%; Found: C, 58.50; H, 7.56; N, 4.17; Cl, 5.28; Sn, 17.55 %. IR

SUPPLEMENTARY MATERIAL

(KBr disc, cm⁻¹); v_{asym} (COO) 1650, v_{sym} (COO)1457, $\Delta v = 193$, 519 (Sn–C), 443 (Sn–O). ¹H-NMR (400 MHz,DMSO- d_6 , δ / ppm): 7.64–7.58 (*m*, 4H, Cl–Ar), 7.52–7.44 (*m*, 5H, Ar), 5.12 (*s*, 1H, Ar(N)CH–CCl–Ar), 4.19 (*s*, 2H, –O–H₂C–COO), 3.82 (*t*, J = 6.7 Hz, 2H, O–CH₂–CH₂–N), 3.68 (*t*, J = 6.4 Hz, 2H, O–CH₂–CH₂–N), 3.51–3.45 (*m*, 4H, N–CH₂CH₂–N), 3.39–3.32 (*m*, 4H, N–CH₂CH₂–N), 1.51–1.23 (*m*, 18H, CH₂, Bu), 0.81–0.75 (*m*, 9H, H₃C of Bu); ¹³C-NMR (75.45 MHz, DMSO- d_6 , δ / ppm): 173.8 (COO), 134.9, 133.7, 132.8, 130.5.130.2, 129.9, 129.6, 128.0, 127.8, 127.6, 127.4, 127.2 (Ar-C), 74.5, 66.7, 63.5, 56.2, 48.4, 48.2, 47.9, 47.7, 42.23, 26.12, 21.05 (CH₂,Bu), 15.53 (H₃C of Bu). ¹¹⁹Sn-NMR DMSO- d_6 , δ / ppm): –159.7. (*m*/*z*) (M+1) peak [C₃₃H₅₁O₃N₂ClSn]⁺ (679), (M+2) peak [C₃₃H₅₁O₃N₂ClSn]⁺ (680).

Triphenylstannyl 2-[2-[4-[(4-chlorophenyl)phenylmethyl]piperazin-1-yl]ethoxy]acetate (6). Quantities used were 0.461 g (0.001 mol) of HL₂ and 0.367 g (0.001 mol) of triphenyltin hydroxide in toluene. Yield 61 %; m.p.: 168–170 °C. Anal. Calcd. for C₃₉H₃₉N₂O₃ClSn (MW 737): C, 63.48; H, 5.33; N, 3.80; Cl, 4.80 Sn, 16.10 %; Found: C, 63.55; H, 5.35; N, 3.82; Cl, 4.78; Sn, 16.15 %. IR (KBr disc, cm⁻¹); v_{asym} (COO) 1687, v_{sym} (COO) 1436, $\Delta v = 251$, 525 (Sn–C), 452(Sn– O). ¹H-NMR (400 MHz,DMSO-d₆, δ / ppm): 7.74–7.66 (*m*, 4H, Cl–Ar), 7.59– -7.22 (*m*, 20H, Ph+Ph–Sn), 5.13 (*s*, 1H, Ar(N)CH–CCl–Ar), 4.14 (*s*, 2H, -O–H₂C–COO), 3.82 (*t*, *J* = 6.7 Hz, 2H, O–CH₂–CH₂–N), 3.68 (*t*, *J* = 6.4 Hz, 2H, O–CH₂–CH₂–N), 3.44–3.38 (*m*, 4H, N–CH₂CH₂–N), 3.32–3.26 (*m*, 4H, N–CH₂CH₂–N); ¹³C-NMR (75.45 MHz, DMSO-d₆, δ / ppm): 173.8 (COO), 134.9, 133.7, 132.8, 130.5, 130.2, 129.9, 129.6, 128.0, 127.8, 127.6, 127.4, 127.2, 126.9, 126.4, 125.8, 125.3, 124.9 (Ar-C), 74.5, 66.7, 63.5, 56.2, 48.4, 48.2, 47.9, 47.7. ¹¹⁹Sn-NMR DMSO-d₆, δ / ppm): –21.8. (*m*/z) (M+1) peak [C₃₉H₃₉N₂O₃ClSn]⁺ (738), (M+2) [C₃₉H₃₉N₂O₃ClSn]⁺ peak (739).

Fig. S-2. Mass spectrum of compound 6.

Available on line at www.shd.org.rs/JSCS/

SUPPLEMENTARY MATERIAL

Fig. S-3. Fragmentation pattern of triphenyltin(IV) (L_2) carboxylates (compound 6).

ANTIOXIDANT

TABLI	E S-I.	Antioxida	nt activit	y data
-------	--------	-----------	------------	--------

Compound		Inhibition ^a , %	IC ₅₀ / µM
$(CH_3)_3Sn(L_1)$	(1)	86.29±2.0	19±1
$(C_4H_9)_3Sn(L_1)$	(2)	60.30±1.5	53±2
$(C_6H_5)_3Sn(L_1)$	(3)	52.30±1.0	55±3
$(CH_3)_3Sn(L_2)$	(4)	91.35±2.1	20±1
$(C_4H_9)_3Sn(L_2)$	(5)	59.35±1.3	56±3
$(C_6H_5)_3Sn(L_2)$	(6)	51.90±1.0	59±3
Ligand (HL ₁)	(7)	58.50±1.0	43±1
Ligand (HL ₂)	(8)	63.40±1.2	48 ± 2
Gallic acid	(9)	92.90±1.0	14 ± 1

^a100 µL samples (5 mg/mL in DMSO)

IFTIKHAR et al.

TABLE S-II. Data of DNA binding studies $((\eta/\eta_0)^{1/3})$ by viscosity method

S190

Binding ratio	Compound							
[Compound]/[SS-DNA]	HL ₁	HL ₂	1	2	3	4	5	6
0.0	1.025	1.03	1.025	1.025	1.025	1.03	1.03	1.03
0.25	1.026	1.03	1.035	1.036	1.038	1.038	1.038	1.038
0.55	1.03	1.033	1.043	1.045	1.046	1.046	1.046	1.046
0.80	1.05	1.055	1.052	1.064	1.067	1.055	1.067	1.072
1.15	1.06	1.065	1.072	1.073	1.074	1.076	1.076	1.076
1.40	1.075	1.076	1.095	1.095	1.095	1.10	1.10	1.10

Fig. S-4. Antioxidant activity of compounds, ligands and standard.

TABLE S-III. Antibacterial activities of ligands and complexes; zone of inhibition, mm; concentration: 1 mg/mL of DMSO. Reference drug: cefixime, 1 mg/mL

	Bacterium					
Compound	Escherichia	Bacillus	Staphylococcus	Pseudomonas	Micrococcus	
	coli	subtilis	aureus	aeruginosa	luteus	
Ligand (HL ₁)	10	08	09	10	11	
Ligand (HL ₂)	11	10	11	11	11	
$(CH_3)_3Sn(L_1)(1)$	13	11	14	15	14	
$(C_4H_9)_3Sn(L_1)(2)$	14	12	13	13	15	
$(C_6H_5)_3Sn(L_1)(3)$	15	13	13	14	13	
$(CH_3)_3Sn(L_2)$ (4)	13	14	12	15	14	
$(C_4H_9)_3Sn(L_2)$ (5)	11	12	13	14	13	
$(C_6H_5)_3Sn(L_2)$ (6)	12	15	12	12	15	
Cefixime	22	21	19	20	23	

(CC) 2018 SCS.

TABLE S-IV. Antifungal activity data, growth inhibition, %; agar tube dilution method, concentration: 200 mg/mL of DMSO

Compound	Fungus					
Compound	Trichophyton longiformis	Candida albicans	Aspergillus flavus			
Ligand (HL ₁)	07	10	15			
Ligand (HL ₂)	10	09	16			
$(CH_3)_3Sn(L_1)(1)$	12	10	18			
$(C_4H_9)_3Sn(L_1)(2)$	13	11	17			
$(C_6H_5)_3Sn(L_1)(3)$	13	10	18			
$(CH_3)_3Sn(L_2)$ (4)	14	13	17			
$(C_4H_9)_3Sn(L_2)$ (5)	13	14	16			
$(C_6H_5)_3Sn(L_2)$ (6)	12	13	19			
Terbinafine	21	23	28			

IFTIKHAR et al.

Fig. S-7. ¹¹⁹Sn-NMR of complex **4**.

S192

Available on line at www.shd.org.rs/JSCS/