

J. Serb. Chem. Soc. 82 (10) S404–S412 (2017) Sup

Supplementary material

SUPPLEMENTARY MATERIAL TO Structural and electronic effects of cation binding (Li⁺, Na⁺, K⁺, Mg²⁺ and Ca²⁺) to the π system of the η^6 -benzene–Cr(CO)₃ complex: a theoretical study

AYYAVOO KALPANA and LAKSHMINARAYANAN AKILANDESWARI*

Department of Chemistry, Sri Sarada College for Women, Salem 636 016, TamilNadu, India

J. Serb. Chem. Soc. 82 (10) (2017) 1123-1134

TABLE S-I. Computed λ_{max} (maximum absorption wavelength), nm, *f* (oscillator strength), *TDM* (transition dipole moments), root mean square value, *RMS*, e-bohr, between the ground and *n*th excited state of all the systems under study; Data corresponding to the maximum absorption wavelength are in bold letters

				MB			
System	State transition	1 /	C	Transition dipole moment			RMS
	State transition	λ/nm	J	x	У	Ζ	e-bohr
BC	$S_0 \rightarrow S_3$	168.03	0.5587	-0.1278	-0.4628	0.0000	0.480
	$S_0 \rightarrow S_4$	168.03	0.5588	-0.4629	0.1278	0.0000	0.480
	$S_0 \rightarrow S_8$	155.08	0.0056	0.0000	0.0000	-0.0087	0.009
Li ⁺ –BC	$S_0 \rightarrow S_2$	193.20	0.0202	0.0085	0.0635	0.0000	0.064
	$S_0 \rightarrow S_3$	193.19	0.0202	-0.0636	0.0084	0.0000	0.064
	$S_0 \rightarrow S_6$	165.65	0.5223	-0.1315	0.4292	0.0000	0.449
	$S_0 \rightarrow S_7$	165.65	0.5222	-0.4292	-0.1315	0.0000	0.449
	$S_0 \rightarrow S_{10}$	163.62	0.0066	0.0000	0.0001	-0.0277	0.028
Na ⁺ –BC	$S_0 \rightarrow S_1$	230.59	0.0111	-0.0067	0.0494	0.0001	0.050
	$S_0 \rightarrow S_2$	230.57	0.0111	0.0495	0.0069	0.0001	0.050
	$S_0 \rightarrow S_5$	168.36	0.5276	-0.0938	0.444	0.0009	0.454
	$S_0 \rightarrow S_6$	168.35	0.5276	0.4441	0.0938	0.001	0.454
K ⁺ –BC	$S_0 \rightarrow S_1$	230.94	0.0085	0.0000	0.0002	-0.0395	0.040
	$S_0 \rightarrow S_2$	230.93	0.0085	0.0000	-0.0395	-0.0002	0.040
	$S_0 \rightarrow S_5$	172.58	0.0001	-0.0055	0.0000	0.0001	0.006
	$S_0 \rightarrow S_7$	171.21	0.1136	0.1767	-0.0001	0.0000	0.177
	$S_0 \rightarrow S_9$	169.78	0.3383	0.0000	-0.2698	0.2307	0.355
	$S_0 \rightarrow S_{10}$	169.76	0.3436	-0.0001	0.233	0.2718	0.358
Mg ²⁺ –BC	$S_0 \rightarrow S_1$	334.30	0.0014	0.0098	0.0108	0/0000	0.015
	$S_0 \rightarrow S_2$	334.28	0.0014	-0.0107	0.0098	-0.0001	0.015
	$S_0 \rightarrow S_8$	174.03	0.0109	0.0000	0.0000	-0.0519	0.052

*Corresponding author. E-mail: akilchem@gmail.com

SUPPLEMENTARY MATERIAL

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					MB				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	System	State	1 /	C -	Tran	Transition dipole moment			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		transition	λ/nm	J	x	У	Ζ	e-bohr	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ca ²⁺ –BC	$S_0 \rightarrow S_1$	296.74	0.0027	0.0000	0.0000	0.0157	0.016	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$S_0 \rightarrow S_2$	296.72	0.0027	0.0000	0.0157	0.0000	0.016	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		$S_0 \rightarrow S_{10}$	173.55	0.0069	0.0335	-0.0001	0.0000	0.034	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0 10			MBC				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	BC	$S_0 \rightarrow S_2$	361.16	0.0004	-0.0011	-0.0122	0.0661	0.067	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\tilde{S_0 \rightarrow S_3}$	361.10	0.0004	-0.0006	0.0657	0.0121	0.067	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_4$	346.01	0.0002	0.0323	0.0405	-0.0043	0.052	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_5$	345.91	0.0010	-0.0093	0.0202	-0.1022	0.105	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_6$	345.80	0.0009	-0.0117	0.0954	0.0238	0.099	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_7$	344.98	0.0005	0.0720	0.0005	-0.0060	0.072	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_8$	328.93	0.0016	-0.0002	-0.1242	-0.0418	0.131	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_9$	328.89	0.0016	0.0008	-0.0419	0.1247	0.132	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_{10}$	308.11	0.0001	0.0006	-0.0353	-0.0010	0.035	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Li ⁺ –BC	$S_0 \rightarrow S_4$	390.76	0.0006	-0.0051	-0.0323	0.0820	0.088	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_5$	390.42	0.0006	0.0013	-0.0824	-0.0336	0.089	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_6$	352.21	0.0025	0.1700	0.0058	0.0026	0.170	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_7$	349.04	0.0013	0.0925	-0.0814	0.0041	0.123	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_8$	348.72	0.0012	-0.0476	-0.0692	-0.0820	0.117	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_9$	348.49	0.0013	0.0531	0.0593	-0.0911	0.121	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_{10}$	322.44	0.0006	0.0060	0.0061	-0.0785	0.079	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Na ⁺ –BC	$S_0 \rightarrow S_2$	398.04	0.0006	0.0000	-0.0337	0.0837	0.090	
$ \begin{split} & S_0 \rightarrow S_4 391.39 0.0001 -0.0007 -0.0035 0.0404 0.041 \\ & S_0 \rightarrow S_5 391.27 0.0001 0.0007 0.0414 0.0036 0.042 \\ & S_0 \rightarrow S_8 367.94 0.0012 -0.1217 -0.0008 -0.0002 0.122 \\ & S_0 \rightarrow S_9 351.84 0.0015 0.0012 -0.1334 0.0118 0.134 \\ & S_0 \rightarrow S_{10} 351.64 0.0015 0.0001 -0.0119 -0.1333 0.134 \\ & S_0 \rightarrow S_4 379.73 0.0007 0.0019 0.0929 0.0145 0.094 \\ & S_0 \rightarrow S_5 379.42 0.0007 -0.0026 -0.0143 0.0924 0.094 \\ & S_0 \rightarrow S_6 377.77 0.0001 -0.0001 0.0292 -0.0173 0.034 \\ & S_0 \rightarrow S_7 377.69 0.0001 -0.0002 -0.0152 -0.0304 0.034 \\ & S_0 \rightarrow S_9 341.11 0.0001 -0.0332 -0.0051 -0.0049 0.034 \\ & S_0 \rightarrow S_9 341.11 0.0001 -0.0326 -0.0183 0.1175 0.119 \\ & Mg^{2+}-BC S_0 \rightarrow S_1 1096.59 0.0002 0.0018 0.0401 -0.0655 0.077 \\ & S_0 \rightarrow S_2 1095.48 0.0002 0.0018 0.0401 -0.0655 0.077 \\ & S_0 \rightarrow S_2 1095.48 0.0002 0.0018 0.0401 -0.0655 0.077 \\ & S_0 \rightarrow S_3 792.33 0.0484 -1.1238 -0.0011 0.0001 1.124 \\ & S_0 \rightarrow S_5 402.55 0.0001 0.0020 -0.0285 -0.0024 0.029 \\ & S_0 \rightarrow S_6 402.43 0.0001 -0.0014 0.0018 -0.0282 0.028 \\ & S_0 \rightarrow S_7 395.43 0.0001 -0.0007 0.0356 0.0053 0.036 \\ & S_0 \rightarrow S_8 395.14 0.0001 0.0001 -0.0057 0.0363 0.037 \\ & S_0 \rightarrow S_8 374.08 0.0016 0.0000 0.1391 -0.0113 0.140 \\ & S_7 \rightarrow S_{17} 373 93 0.0016 0.0010 0.0112 0.1395 0.140 \\ & S_{10} \rightarrow S_{10} S_{17} 93 0.0016 0.0000 0.0112 0.01395 0.140 \\ & S_{10} \rightarrow S_{10} 373 93 0.0016 0.0000 0.0112 0.0113 0.140 \\ & S_{10} \rightarrow S_{10} 373 93 0.0016 0.0000 0.0112 0.0113 0.140 \\ & S_{10} \rightarrow S_{10} 373 93 0.0016 0.0010 0.0112 0.0113 0.140 \\ & S_{10} \rightarrow S_{10} S_{10} S_{10} S_{10} S_{10} S_{10} \rightarrow S_{10} S_$		$S_0 \rightarrow S_3$	397.86	0.0006	0.0018	0.0831	0.0338	0.090	
$ \begin{split} & S_0 \rightarrow S_5 391.27 0.0001 0.0007 0.0414 0.0036 0.042 \\ & S_0 \rightarrow S_8 367.94 0.0012 -0.1217 -0.0008 -0.0002 0.122 \\ & S_0 \rightarrow S_9 351.84 0.0015 0.0012 -0.1334 0.0118 0.134 \\ & S_0 \rightarrow S_{10} 351.64 0.0015 0.0001 -0.0119 -0.1333 0.134 \\ & S_0 \rightarrow S_1 351.64 0.0007 0.0019 0.0929 0.0145 0.094 \\ & S_0 \rightarrow S_5 379.42 0.0007 -0.0026 -0.0143 0.0924 0.094 \\ & S_0 \rightarrow S_6 377.77 0.0001 -0.0001 0.0292 -0.0173 0.034 \\ & S_0 \rightarrow S_7 377.69 0.0001 -0.0002 -0.0152 -0.0304 0.034 \\ & S_0 \rightarrow S_9 341.11 0.0001 -0.0332 -0.0051 -0.0049 0.034 \\ & S_0 \rightarrow S_9 341.11 0.0001 -0.0026 -0.0183 0.1175 0.119 \\ & Mg^{2+}-BC S_0 \rightarrow S_1 1096.59 0.0002 0.0018 0.0651 0.0407 0.077 \\ & S_0 \rightarrow S_2 1095.48 0.0022 0.0018 0.0401 -0.0655 0.077 \\ & S_0 \rightarrow S_5 402.55 0.0001 0.0020 -0.0285 -0.0024 0.029 \\ & S_0 \rightarrow S_6 402.43 0.0001 -0.0014 0.0018 -0.0282 0.028 \\ & S_0 \rightarrow S_7 395.43 0.0001 -0.0007 0.0356 0.0053 0.036 \\ & S_0 \rightarrow S_8 395.14 0.0001 -0.0007 0.0356 0.0053 0.036 \\ & S_0 \rightarrow S_8 395.14 0.0016 0.0000 0.1391 -0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.1395 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.1395 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 S_0 \rightarrow $		$S_0 \rightarrow S_4$	391.39	0.0001	-0.0007	-0.0035	0.0404	0.041	
$ \begin{split} & S_0 \rightarrow S_8 367.94 0.0012 -0.1217 -0.0008 -0.0002 0.122 \\ & S_0 \rightarrow S_9 351.84 0.0015 0.0012 -0.1334 0.0118 0.134 \\ & S_0 \rightarrow S_{10} 351.64 0.0015 0.0001 -0.0119 -0.1333 0.134 \\ & S_0 \rightarrow S_4 379.73 0.0007 0.0019 0.0929 0.0145 0.094 \\ & S_0 \rightarrow S_5 379.42 0.0007 -0.0026 -0.0143 0.0924 0.094 \\ & S_0 \rightarrow S_6 377.77 0.0001 -0.0001 0.0292 -0.0173 0.034 \\ & S_0 \rightarrow S_7 377.69 0.0001 -0.0002 -0.0152 -0.0304 0.034 \\ & S_0 \rightarrow S_9 341.11 0.0001 -0.0332 -0.0051 -0.0049 0.034 \\ & S_0 \rightarrow S_1 339.76 0.0013 -0.0026 -0.0183 0.1175 0.119 \\ & Mg^{2+}-BC S_0 \rightarrow S_1 1096.59 0.0002 0.0018 0.0651 0.0407 0.077 \\ & S_0 \rightarrow S_2 1095.48 0.0002 0.0018 0.0401 -0.0655 0.077 \\ & S_0 \rightarrow S_5 402.55 0.0001 0.0020 -0.0285 -0.0024 0.029 \\ & S_0 \rightarrow S_6 402.43 0.0001 -0.0014 0.0018 -0.0282 0.028 \\ & S_0 \rightarrow S_7 395.43 0.0001 -0.0007 0.0356 0.0053 0.036 \\ & S_0 \rightarrow S_8 395.14 0.0001 -0.0007 0.0356 0.0053 0.036 \\ & S_0 \rightarrow S_8 395.14 0.0016 0.0000 0.1391 -0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.1395 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.1395 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.0112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 373.93 0.0016 0.0010 0.00112 0.0139 0.0113 0.140 \\ & S_0 \rightarrow S_1 S_0 \rightarrow S_1 S_0 $		$S_0 \rightarrow S_5$	391.27	0.0001	0.0007	0.0414	0.0036	0.042	
$ \begin{split} & \mathbf{S_0} \!$		$S_0 \rightarrow S_8$	367.94	0.0012	-0.1217	-0.0008	-0.0002	0.122	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_9$	351.84	0.0015	0.0012	-0.1334	0.0118	0.134	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_{10}$	351.64	0.0015	0.0001	-0.0119	-0.1333	0.134	
$ \begin{split} & S_0 \rightarrow S_5 379.42 0.0007 -0.0026 -0.0143 0.0924 0.094 \\ & S_0 \rightarrow S_6 377.77 0.0001 -0.0001 0.0292 -0.0173 0.034 \\ & S_0 \rightarrow S_7 377.69 0.0001 -0.0002 -0.0152 -0.0304 0.034 \\ & S_0 \rightarrow S_9 341.11 0.0001 -0.0332 -0.0051 -0.0049 0.034 \\ & S_0 \rightarrow S_{10} 339.76 0.0013 -0.0026 -0.0183 0.1175 0.119 \\ & S_0 \rightarrow S_1 1096.59 0.0002 0.0018 0.0651 0.0407 0.077 \\ & S_0 \rightarrow S_2 1095.48 0.0002 0.0018 0.0401 -0.0655 0.077 \\ & S_0 \rightarrow S_3 792.33 0.0484 -1.1238 -0.0011 0.0001 1.124 \\ & S_0 \rightarrow S_5 402.55 0.0001 0.0020 -0.0285 -0.0024 0.029 \\ & S_0 \rightarrow S_6 402.43 0.0001 -0.0014 0.0018 -0.0282 0.028 \\ & S_0 \rightarrow S_7 395.43 0.0001 -0.0007 0.0356 0.0053 0.036 \\ & S_0 \rightarrow S_8 395.14 0.0001 0.0001 -0.0057 0.0363 0.037 \\ & S_0 \rightarrow S_9 374.08 0.0016 0.0000 0.1391 -0.0113 0.140 \\ & S_5 \rightarrow S_4 373 93 0.0016 0.0010 0.0112 0.1395 0.140 \\ & S_5 \rightarrow S_4 373 93 0.0016 0.0010 0.0112 0.1395 0.140 \\ & S_1 \rightarrow S_1 S_1 \rightarrow S_1 S_1 S_1 \rightarrow S_1 S$	K ⁺ –BC	$S_0 \rightarrow S_4$	379.73	0.0007	0.0019	0.0929	0.0145	0.094	
$ \begin{split} & S_0 \rightarrow S_6 377.77 0.0001 -0.0001 0.0292 \qquad -0.0173 0.034 \\ & S_0 \rightarrow S_7 377.69 0.0001 -0.0002 -0.0152 -0.0304 0.034 \\ & S_0 \rightarrow S_9 341.11 0.0001 -0.0332 -0.0051 -0.0049 0.034 \\ & S_0 \rightarrow S_{10} 339.76 0.0013 -0.0026 -0.0183 0.1175 0.119 \\ & S_0 \rightarrow S_1 1096.59 0.0002 0.0018 0.0651 0.0407 0.077 \\ & S_0 \rightarrow S_2 1095.48 0.0002 0.0018 0.0401 -0.0655 0.077 \\ & S_0 \rightarrow S_3 792.33 0.0484 -1.1238 -0.0011 0.0001 1.124 \\ & S_0 \rightarrow S_5 402.55 0.0001 0.0020 -0.0285 -0.0024 0.029 \\ & S_0 \rightarrow S_6 402.43 0.0001 -0.0014 0.0018 -0.0282 0.028 \\ & S_0 \rightarrow S_7 395.43 0.0001 -0.0007 0.0356 0.0053 0.036 \\ & S_0 \rightarrow S_8 395.14 0.0001 0.0001 -0.0057 0.0363 0.037 \\ & S_0 \rightarrow S_9 374.08 0.0016 0.0000 0.1391 -0.0113 0.140 \\ & S_c \rightarrow S_{10} 373.93 0.0016 0.0010 0.0112 0.1395 0.140 \\ & S_1 \rightarrow S_1 $		$S_0 \rightarrow S_5$	379.42	0.0007	-0.0026	-0.0143	0.0924	0.094	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_6$	377.77	0.0001	-0.0001	0.0292	-0.0173	0.034	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_7$	377.69	0.0001	-0.0002	-0.0152	-0.0304	0.034	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_9$	341.11	0.0001	-0.0332	-0.0051	-0.0049	0.034	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	$S_0 \rightarrow S_{10}$	339.76	0.0013	-0.0026	-0.0183	0.1175	0.119	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mg ²⁺ –BC	$S_0 \rightarrow S_1$	1096.59	0.0002	0.0018	0.0651	0.0407	0.077	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_2$	1095.48	0.0002	0.0018	0.0401	-0.0655	0.077	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_3$	792.33	0.0484	-1.1238	-0.0011	0.0001	1.124	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_5$	402.55	0.0001	0.0020	-0.0285	-0.0024	0.029	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_0 \rightarrow S_6$	402.43	0.0001	-0.0014	0.0018	-0.0282	0.028	
$S_0 \rightarrow S_8$ 395.14 0.0001 0.0001 -0.0057 0.0363 0.037 $S_0 \rightarrow S_9$ 374.08 0.0016 0.0000 0.1391 -0.0113 0.140 $S_2 \rightarrow S_{12}$ 373.93 0.0016 0.0010 0.0112 0.1395 0.140		$S_0 \rightarrow S_7$	395.43	0.0001	-0.0007	0.0356	0.0053	0.036	
$S_0 \rightarrow S_9$ 374.08 0.0016 0.0000 0.1391 -0.0113 0.140 $S_0 \rightarrow S_{10}$ 373.93 0.0016 0.0010 0.0112 0.1395 0.140		$S_0 \rightarrow S_8$	395.14	0.0001	0.0001	-0.0057	0.0363	0.037	
$S_{}S_{+-} = 373.93 0.0016 0.0010 0.0112 0.1395 0.140$		$S_0 \rightarrow S_9$	374.08	0.0016	0.0000	0.1391	-0.0113	0.140	
$S_{(0)} S_{(0)} S_{($		$S_0 \rightarrow S_{10}$	373.93	0.0016	0.0010	0.0112	0.1395	0.140	

TABLE S-I. Continued

Available on line at www.shd.org.rs/JSCS/

TABLE S-I.	Continued
------------	-----------

	MB								
System	State	1 /	f -	Tran	Transition dipole moment				
	transition	λ/nm		x	У	Z	e-bohr		
				MBC					
Ca ²⁺ –BC	$S_0 \rightarrow S_1$	744.07	0.0003	0.0002	0.0394	-0.0834	0.092		
	$S_0 \rightarrow S_2$	743.49	0.0003	0.0013	0.0835	0.0395	0.092		
	$S_0 \rightarrow S_3$	667.06	0.0174	-0.6181	0.0001	-0.0001	0.618		
	$S_0 \rightarrow S_5$	430.26	0.0001	0.0008	-0.0075	-0.0359	0.037		
	$S_0 \rightarrow S_6$	430.18	0.0001	-0.0001	0.0359	-0.0077	0.037		
	$S_0 \rightarrow S_9$	374.44	0.0009	0.0003	-0.0892	0.0523	0.103		
	$S_0 \rightarrow S_{10}$	374.36	0.0009	0.0003	-0.0518	-0.0892	0.103		

TABLE S-II. NTO pictures and MO transitions corresponding to λ_{max} / nm of the MB systems under study

	2		NTO	MO transitions amplitude		
System	(f)	Contribu- tion, %	Hole	Particle	contribu	tion, %
В	168.035 (0.559)	50			HOMO-1 → LUMO	0.69 (47%)
					$\begin{array}{c} \text{HOMO} \rightarrow \\ \text{LUMO+1} \end{array}$	-0.69 (47%)
		50			$HOMO-1 \rightarrow UUMO+1$	-0.16 (2%)
		50			HOMO → LUMO	-0.16 (2%)
Li ⁺ –B	165.649	49		(U)	HOMO-1 → LUMO	0.62 (38%)
	(***==)				$\begin{array}{c} \text{HOMO} \rightarrow \\ \text{LUMO+1} \end{array}$	-0.62 (38%)
					$HOMO-1 \rightarrow$	0.33 (11%)
		49			LUMO+1 HOMO \rightarrow	0.33 (11%)
					LUMO	0.55 (1170)
Na ⁺ –B	168.357	49			HOMO-1 \rightarrow	0.70 (49%)
	(0.528)				$LUMO+2 HOMO \rightarrow LUMO+1$	-0.70 (49%)

SUPPLEMENTARY MATERIAL

	2		NTO	MO transitions amplitude				
System	(f)	Contribu- tion, %	Hole	Particle	contribution, %			
Na ⁺ –B	168.357 (0.528)	49						
$K^+ - B$		63	•	ŏ	HOMO-1 \rightarrow	0.57 (32%)		
					LUMO+3 HOMO \rightarrow LUMO+1	0.57 (32%)		
	169.766				$HOMO \rightarrow$	0.46 (21%)		
	(0.344)	34		-	HOMO-1 \rightarrow	0.28 (8%)		
					LUMO+5	0.15 (20/)		
					LUMO+1 LUMO+1	0.15 (2%)		
Mg ²⁺ -	174.029	53			HOMO-2 \rightarrow	0.73 (53%)		
–B	(0.011)				$\begin{array}{c} \text{LUMO+1} \\ \text{HOMO-3} \rightarrow \\ \text{LUMO+2} \end{array}$	0.67 (45%)		
		45						
Ca ²⁺ –B	173.551	49	•	Aca	HOMO-3 \rightarrow	0.70 (49%)		
	(0.007)				$LUMO+2 HOMO-2 \rightarrow LUMO+1$	0.70 (48%)		
		48						

TABLE S-II. Continued

TABLE S-III. NTO pictures and MO transitions corresponding to λ_{max} / nm of the MBC systems under study

	2		NTO		MO trans	sitions amplit	ıdə
System	f	Contri- bution, %	Hole	Particle	con	tribution, %	icic,
BC	328.925	5 71	n		HOMO-2	$2 \rightarrow 0.71$	(51%)
	(0.002))	- Contraction of	-	LUMO-	+1	
			- Contraction	140	HOMO-2	$2 \rightarrow -0.37$	(14%)
			and the second	14	LUMO-	+2	
				6.00.¢	HOMO-1	\rightarrow 0.28	(8%)
				-	LUMO-	+3	
		10			HOMO	\rightarrow -0.27	(7%)
			€ _		LUMO-	+2	
					HOMO-2	\rightarrow -0.18	(3%)
					LUMO+	-13	
				~~ v	HOMO-1	\rightarrow 0.15	(2%)
				-	LUMO+	-12	
Li'–BC	352.210) 49	UE .		HOMO	\rightarrow 0.45	(21%)
	(0.003)		e		LUMO-	+5	
			a		HOMO	\rightarrow -0.45	(20%)
					LUMO-	⊦4	(100())
					HOMO-I	\rightarrow -0.44	(19%)
				8 8	LUMO-	⊦4	(1 = 0 ()
		12			HOMO-I	\rightarrow -0.41	(17%)
		43			LUMO-	⊦S 0.00	(50()
			6		HOMO	\rightarrow -0.22	(5%)
			a 👘 a	6	LUMO+	12	(40/)
					HOMO-I	\rightarrow -0.20	(4%)
			6 6		LUMO+	11	
Na ⁺ -	351.840) 77			HOMO-2	$2 \rightarrow 0.66$	(43%)
BC	(0.002)				LUMO-	+3	
					HOMO-2	$2 \rightarrow 0.31$	(10%)
			at a		LUMO+	·11	
				200 - 200 -	HOMO-2	$2 \rightarrow 0.27$	(7%)
				Gu	LUMO-	+1	
					HOMO-2	$2 \rightarrow 0.27$	(7%)
					LUMO-	+6	
					HOMO	\rightarrow 0.23	(5%)
					LUMO-	+4	
					HOMO-1	\rightarrow 0.23	(5%)
					LUMO-	+3	

Fig. S-1. Interaction energy, kcal* mol⁻¹, vs. charge on the monovalent metal cations, atomic unit in the MB systems.

*1 kcal = 4184 J

Available on line at www.shd.org.rs/JSCS/

Fig. S-2. Interaction energy, kcal mol⁻¹, vs. charge on the divalent metal cations, atomic unit, in the MB systems.

Interaction energy, kcal/mol

Fig. S-3. Interaction energy, kcal mol⁻¹, vs. charge on the monovalent metal cations, atomic unit, in the MBC systems.

incluction chergy, Kearmon

Fig. S-4. Interaction energy, kcal mol⁻¹, vs. charge on the divalent metal cations, atomic unit, in the MBC systems.

Fig. S-5. Interaction energy, kcal mol⁻¹, vs. charge on the metal cation, atomic unit, in the MB systems.

Available on line at www.shd.org.rs/JSCS/

Fig. S-6. Interaction energy, kcal mol⁻¹, *vs.* charge on the metal cation, atomic unit, in the MBC systems.