SUPPLEMENTARY MATERIAL

2	
3	Synthesis, structures and electronic properties of Co(III) complexes with
4	2-quinolinecarboxaldehyde thio- and selenosemicarbazone: a combined experimental
5	and theoretical study
6	IVANA S. DJORDJEVIĆ ¹ **, JELENA VUKAŠINOVIĆ ² , TAMARA R. TODOROVIĆ ^{3#} ,
7 8	NENAD R. FILIPOVIĆ ^{4#} , MARKO V. RODIĆ ⁵ , ALEKANDAR LOLIĆ ³ , GUSTAVO PORTALONE ⁶ , MARIO ZLATOVIĆ ^{3#} and SONIA GRUBIŠIĆ ¹ *
9	¹ Institute of Chemistry, Technology and Metallurgy, University of Belgrade,
10	Njegoševa 12, 11001 Belgrade, Serbia
11	² Institute for multidisciplinary research, University of Belgrade, Volgina 15, 11060 Belgrade,
12	Serbia
13	³ Faculty of Chemistry, University of Belgrade, Studentski trg 12–16, 11001 Belgrade, Serbia
14	⁴ Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia
15	⁵ Department of Chemistry, Faculty of Sciences, University of Novi Sad, Trg Dositeja
16	Obradovića 4, Novi Sad, Serbia
17	⁶ Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185
18	Rome, Italy
19	
20	
21	
22	
23	
24 25	
25 26	
20 27	
28	
29	
30	
31	

^{*.**}Corresponding authors. E-mail: (*)grubisic@chem.bg.ac.rs; (**)ivana.djordjevic@chem.bg.ac.rs # Serbian Chemical Society member.

34 TABLE S-I. Crystal data and structure refinement for complexes 1 and 2.

Complex	1	2
Empirical formula	$C_{22}H_{18}CoN_8S_2^+ \times ClO_4^- \times OH_2$	$C_{22}H_{18}CoN_8Se_2^+\times ClO_4^-\times OH_2$
Formula weight	634.96	726.74
Temperature, K	293(2)	293(2)
Wavelength , Å	0.71073	0.71073
Crystal system	Triclinic	Triclinic
Space group	<i>P</i> –1	<i>P</i> –1
Unit cell dimensions		
<i>a</i> / Å	9.4673(4)	9.5870(5)
b / Å	10.9731(3)	11.2021(6)
<i>c</i> / Å	13.9826(4)	13.9356(6)
lpha / °	70.668(3)	71.128(4)
β / °	87.653(3)	87.977(4)
γ / °	72.439(3)	72.076(5)
Volume, Å ³	1304.01(8)	1343.99(13)
Ζ	2	2
Density (calculated), Mg m ⁻³	1.617	1.801
Absorption coefficient, mm ⁻¹	0.97	3.50
F(000)	648	720
Theta range for data collection, $^{\circ}$	2.6 to 29.1	2.5 to 29.0
Reflections collected	28698	20644
Independent reflections	6312 [<i>R</i> (int) = 0.0250]	6379 [<i>R</i> (int) = 0.0243]
Completeness to theta = 26.320°	99.9 %	99.9 %
Refinement method	Full-matrix least-squ	uares on F^2
Data / restraints / parameters	6312 / 4 / 364	6379 / 4 / 366
Goodness-of-fit on F^2	1.05	1.007
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]$	$R_1 = 0.0359, wR_2 = 0.0916$	$R_1 = 0.0370, wR_2 = 0.0976$
R indices (all data)	$R_1 = 0.0430, wR_2 = 0.0963$	$R_1 = 0.0475, wR_2 = 0.1037$
Largest diff. peak and hole, e $Å^{-3}$	0.48 and -0.41	0.91 and -0.51

40 TABLE S–II. Hydrogen bond (Å) and π - π stacking interaction parameters (angle, ° and distance, Å) in

41 the crystal structure of complexes **1** and **2**.

H-bond parameters					
D–H···A	D–H / Å	H…A / Å	D…A / Å	D–H···A / °	symmetry operation on
					А
complex 1					
N4A-H41A…N3A	0.845(17)	2.357(18)	3.166(2)	161(2)	1 - x, 1 - y, 1 - z
N4A-H42A…N3B	0.857(17)	2.441(19)	3.252(3)	158(2)	1 - x, -y, 1 - z
N4B-H41B…O5	0.862(17)	2.28(2)	3.054(4)	150(3)	1 - x, -y, 1 - z
N4B-H42B…O4	0.872(18)	2.302(19)	3.158(4)	167(3)	2 - x, -y, 1 - z
complex 2					
N4A-H41A…N3A	0.849(19)	2.32(2)	3.122(4)	157(4)	1 - x, 1 - y, 1 - z
N4A-H42A…N3B	0.860(18)	2.59(2)	3.408(4)	158(4)	1 - x, -y, 1 - z
N4B-H41B…O5	0.871(19)	2.23(3)	3.041(6)	154(4)	1 - x, -y, 1 - z
N4B-H42B…O4	0.870(19)	2.35(2)	3.212(8)	169(4)	2 - x, -y, 1 - z
$\pi - \pi$ interaction parameters	eters				
Cg(I),Cg(J) ^a	$\alpha^{ m c}$ / °	eta^{d} / °	γ ^e /°	slippage ^f /Å	symmetry operation on
$Cg\!-\!Cg^b/\mathring{A}$					J
complex 1					
Cg1, Cg1	0.00(13)	21.9	21.9	1.560	1-x, 1-y, -z
4.184(16)					
Cg2, Cg2	0.02(14)	17.9	17.9	1.150	-x, $1-y$, $-z$
3.7319(17)					
Cg3, Cg3	0.03(11)	18.3	18.3	1.132	-x, 1-y, 1-z
3.6062(14)					
complex 2					
Cg1, Cg1	0.0(2)	21.8	21.8	1.673	1-x, 1-y, -z
4.506(3)					
Cg2, Cg2	0.0(2)	20.0	20.0	1.285	-x, $1-y$, $-z$
3.759(3)					
Cg3, Cg3	0.03(17)	19.9	19.9	1.233	-x, 1-y, 1-z
3.630(2)					

42 ^a Planes of the rings I/J: ring (1) = N(1A), C(3A), C(4A), C(5A), C(6A), C(7A); ring (2) =

43 C(6A),C(7A),C(8A),C(9A),C(10A),C(11A); ring (3) = C(6B),C(7B),C(8B),C(9B),C(10B),C(11B); ^b

44 Cg–Cg = distance between ring centroids (Å); ^c α = dihedral angle between planes I and J (°); ^d β =

45 angle between Cg(I),Cg(J) vector and normal to plane I (°); $^{\circ}\gamma$ = angle between Cg(I), Cg(J) vector

46 and normal to plane J (°); ^f Slippage = distance between Cg(I) and perpendicular projection of Cg(J)

47 on ring I (Å).

48

50 Fig. S-1. Atomic numbering for investigated molecules (X=S for 1 and X=Se for 2).

51

52	TABLE S-III.	Comparison	of average	values of the	theoretically	v calculated Co-	-N and Co-Se bond
						,	

lengths (Å) obtained for the complex 2, using two DFT/B3LYP with two basis sets and experimental

54 measured values.

Basis sets / Bond	Co-N ₂	Co-N ₁	Co–Se ₁
$6-311g(d,p)^{a}$	1.925	2.099	2.380
cc-pVTZ / 6-311g(d) ^b	1.940	2.120	2.398
Measured ^c	1.913	2.056	2.335

^a B3LYP functional with 6-311g(d,p) on all atoms; ^bB3LYP functional with cc–pVTZ on Co and 6-

56 311g(d) on all others atoms; ^c Experimental measured bond lengths

57

58 TABLE S-IV. Comparison average values of the experimental and the theoretical calculated Co-N,

59 Co-S and Co-Se bond lengths (Å) obtained for the complexes 1 and 2.

Compound / Bond, Å	Co	$-N_2$	Co	$-N_1$	Co	$-\mathbf{S}_1$
1	1.901 ^a	1.914 ^b	2.058ª	2.081 ^b	2.224ª	2.267 ^b
	Co–N ₂		Co–N ₁		Co–Se ₁	
2	1.913ª	1.925 ^b	2.056 ^a	2.099 ^b	2.335ª	2.380 ^b

^a Crystal structure data obtained by XRD in the presentwork; ^b Optimized geometries parameters

61 obtained by the use of DFT/B3LYP/6-311G(d,p)

Fig. S-2. The ground state geometries of a) complex **1** and b) complex **2**.

TABLE S-V. TD–DFT electronic transitions (absorption maxima, nm), oscillator strengths (*f*) and
major MO contributors in percent of complexes 1 in DMSO.

Complex	No.	λ / nm	f	MO major contributors, %					
1				Transition	%	Transition	%	Transition	%
	1	715	0.0004	$H-1 \rightarrow L+2$	33	$H-5\rightarrow L+2$	25	$H-13 \rightarrow L+2$	14
	2	526	0.0017	$HOMO \rightarrow L+2$	46	$HOMO \rightarrow L+1$	28		
	3	507	0.0000	$H-1 \rightarrow L+3$	32	$HOMO \rightarrow L+1$	13	H−1→LUMO	11
	4	500	0.0318	HOMO→LUMO	91	$H-1 \rightarrow L+1$	3		
	5	493	0.0081	$H-12 \rightarrow L+3$	23	$HOMO \rightarrow L+3$	12	$H-11 \rightarrow L+2$	11
	6	476	0.0008	$HOMO \rightarrow L+1$	39	$HOMO \rightarrow L+2$	30	H−1→LUMO	21
	7	453	0.1186	H–1→LUMO	45	$HOMO \rightarrow L+1$	16		
	8	444	0.1238	$H-1 \rightarrow L+1$	73	$H-1\rightarrow L+2$	12		
	9	439	0.0250	$HOMO \rightarrow L+3$	52	$H-1 \rightarrow L+1$	13	$H-1 \rightarrow L+2$	11
	10	438	0.0416	$H-1 \rightarrow L+3$	23	H−1→LUMO	13	$H-5\rightarrow L+3$	11
	11	411	0.0003	$H-1 \rightarrow L+2$	28	HOMO→L+3	27	$H-12 \rightarrow L+3$	12
	12	394	0.0153	$H-2\rightarrow L+2$	48	$H - 2 \rightarrow L + 1$	24	H−5→LUMO	6
	13	390	0.0523	H–2→LUMO	87	$H - 5 \rightarrow L + 1$	4		
	14	381	0.0488	$H-2\rightarrow L+2$	23	H–3→LUMO	17	H−5→LUMO	12
	15	379	0.0128	$H-2\rightarrow L+1$	34	H–3→LUMO	26	$H-2\rightarrow L+2$	19
	16	376	0.0167	$H - 3 \rightarrow L + 1$	52	$H - 3 \rightarrow L + 2$	11	$H-5\rightarrow L+2$	10

	17	371	0.0008	H–3→LUMO	54	$H-2\rightarrow L+1$	14	$H-11 \rightarrow L+3$	6
	18	368	0.0695	H–4→LUMO	82	$H - 3 \rightarrow L + 1$	6		
	19	360	0.0038	$H - 3 \rightarrow L + 1$	31	$H-5\rightarrow L+1$	18	H–4→LUMO	12
	20	359	0.1652	H–5→LUMO	53	$H-2\rightarrow L+1$	22	$H-2\rightarrow L+2$	5
	21	357	0.0339	$H-4\rightarrow L+1$	88	$H-6\rightarrow L+2$	2		
	22	354	0.1253	$H - 5 \rightarrow L + 1$	48	$H - 3 \rightarrow L + 2$	11	H–13 \rightarrow L+2	9
	23	349	0.0493	$H - 3 \rightarrow L + 2$	41	$H-2\rightarrow L+3$	26	$H - 5 \rightarrow L + 1$	10
	24	346	0.0312	$H - 5 \rightarrow L + 3$	42	$H-1\rightarrow L+3$	30	$H-13 \rightarrow L+3$	10
	25	343	0.0403	$H-2\rightarrow L+3$	68	$H - 3 \rightarrow L + 2$	20	$H - 5 \rightarrow L + 1$	3
	26	337	0.0067	$H-4\rightarrow L+2$	84	$H-6\rightarrow L+1$	5	$H-6\rightarrow L+2$	3
	27	330	0.0028	H–6→LUMO	86	$H-7\rightarrow L+1$	3		
	28	324	0.0008	$H - 6 \rightarrow L + 1$	58	H−7→LUMO	20	H–9→LUMO	5
	29	316	0.0012	$H - 3 \rightarrow L + 3$	72	$HOMO \rightarrow L+4$	6	$H-13 \rightarrow L+3$	5
	30	312	0.0176	HOMO→L+5	66	$H-7\rightarrow L+1$	9	H–13 \rightarrow L+2	7
	31	312	0.0445	HOMO→L+4	50	H−7→LUMO	17	H−7→LUMO+3	14
	32	309	0.1095	HOMO→L+5	26	H-13 \rightarrow L+2	20	$H - 5 \rightarrow L + 2$	18
	33	308	0.0204	H−7→LUMO	38	$HOMO \rightarrow L+4$	29	$H - 6 \rightarrow L + 1$	13
	34	303	0.0020	$H-4\rightarrow L+3$	81	$H-7\rightarrow L+1$	6	$H-12 \rightarrow L+3$	4
	35	301	0.0403	$H - 6 \rightarrow L + 2$	56	H–10 \rightarrow L+2	16	H–12 \rightarrow L+2	6
	36	298	0.0994	$H-1\rightarrow L+4$	89				
	37	296	0.1203	$H-1\rightarrow L+5$	84	H−7→LUMO	4	HOMO→L+4	4

TABLE S-VI. TD–DFT electronic transitions (absorption maxima, nm), oscillator strengths (*f*) and
major MO contributors in percent of complexes 2 in DMSO.

Complex	No.	λ / nm	f		MO major contributors, %				
2				Transition	%	Transition	%	Transition	%
	1	748	0.0003	$H-1 \rightarrow L+2$	39	$H-13\rightarrow L+2$	13	$H-4\rightarrow L+2$	10
	2	590	0.0008	$HOMO \rightarrow L+1$	54	$HOMO \rightarrow L+2$	44		
	3	570	0.0189	HOMO→LUMO	97				
	4	535	0.0001	$H-1\rightarrow L+3$	24	H−1→LUMO	19	H–13 \rightarrow L+3	15
	5	530	0.0089	$HOMO \rightarrow L+2$	39	HOMO→L+1	29	$H-1\rightarrow L+3$	16
	6	513	0.0053	H–12 \rightarrow L+3	33	$HOMO \rightarrow L+3$	20	H–14 \rightarrow L+2	7
	7	482	0.0609	H−1→LUMO	60	H–14 \rightarrow L+3	5		
	8	478	0.0005	$HOMO \rightarrow L+3$	71	$H-14\rightarrow L+2$	3	H–11 \rightarrow L+2	4
	9	466	0.0914	$H - 1 \rightarrow L + 1$	80	$H-1\rightarrow L+2$	10		

11	429	0.0010	$H-1 \rightarrow L+2$	26	H-12 \rightarrow L+3	18	$H-4\rightarrow L+2$	6
12	417	0.0082	$H-2\rightarrow L+2$	38	$H - 2 \rightarrow L + 1$	32		
13	408	0.0790	H–2→LUMO	84	$H - 3 \rightarrow L + 2$	4	$H - 3 \rightarrow L + 1$	3
14	396	0.0083	$H-2\rightarrow L+2$	37	$H - 2 \rightarrow L + 1$	34	H−3→LUMO	24
15	389	0.0588	H–12 \rightarrow L+2	17	H–4→LUMO	14	$H-2\rightarrow L+2$	12
16	386	0.0147	$H - 3 \rightarrow L + 1$	50	$H - 3 \rightarrow L + 2$	24	$H - 4 \rightarrow L + 1$	10
17	376	0.0448	H–3→LUMO	48	H–4→LUMO	31	$H - 2 \rightarrow L + 1$	14
18	371	0.1849	H–3→LUMO	48	H–4→LUMO	18		
19	370	0.0440	H−5→LUMO	59	H–13 \rightarrow L+2	9	$H - 4 \rightarrow L + 1$	8
20	367	0.1496	$H - 4 \rightarrow L + 1$	44	$H - 3 \rightarrow L + 1$	24	$H - 4 \rightarrow L + 2$	8
21	366	0.0180	H−5→LUMO	31	H–13 \rightarrow L+2	16	$H-2\rightarrow L+3$	14
22	360	0.0370	$H - 5 \rightarrow L + 1$	88	HOMO→L+4	3		
23	359	0.0431	$H-2\rightarrow L+3$	35	$H - 3 \rightarrow L + 2$	21	$H - 4 \rightarrow L + 1$	13
24	352	0.0630	$H-2 \rightarrow L+3$	42	$H - 3 \rightarrow L +$	24	$H - 4 \rightarrow L + 2$	12
25	348	0.0175	$H-3 \rightarrow L+3$	38	$H-1\rightarrow L+3$	24	$H-13\rightarrow L+3$	15
26	339	0.0115	H–6→LUMO	81				
27	339	0.0006	$H-5\rightarrow L+2$	61	$H - 6 \rightarrow L + 1$	19		
28	335	0.0252	$HOMO \rightarrow L+4$	62	$H - 6 \rightarrow L + 1$	13	H−7→LUMO	12
29	335	0.0296	$HOMO \rightarrow L+5$	92				
30	331	0.0372	$H-6\rightarrow L+1$	33	$H - 5 \rightarrow L + 2$	27	HOMO→L+4	15
31	325	0.0038	$H-3 \rightarrow L+3$	42	$H-4\rightarrow L+3$	28	$H-13\rightarrow L+3$	13
32	324	0.0501	$H-4\rightarrow L+2$	38	$H-7\rightarrow L+1$	18	$H-13\rightarrow L+2$	18
33	320	0.0019	H−7→LUMO	65	$H - 6 \rightarrow L + 1$	20		
34	313	0.0033	$H-7\rightarrow L+1$	62				
35	311	0.0020	$H-5\rightarrow L+3$	28	$H - 6 \rightarrow L + 3$	25	$H-12\rightarrow L+3$	22
36	309	0.0574	$H-6\rightarrow L+2$	57	H-12 \rightarrow L+1	9	$H-12\rightarrow L+2$	9
37	306	0.0543	$H-1 \rightarrow L+4$	92				

