

J. Serb. Chem. Soc. 82 (5) S217–S222 (2017)

JSCS@tmf.bg.ac.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO Nitrogen-modified nanoporous activated carbon from eucalyptus leaves for ultrasound-assisted removal of basic dyes using derivative spectrophotometric method

AISAN KHALIGH^{1*}, HASSAN ZAVVAR MOUSAVI¹, ALIMORAD RASHIDI² and HAMID SHIRKHANLOO³

¹Department of Chemistry, Semnan University, Semnan 35131-1911, Iran, ²Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, Tehran 14857-33111, Iran and ³Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, Tehran 14857-33111, Iran

J. Serb. Chem. Soc. 82 (5) (2017) 651-668

FT-IR analysis of the pristine and modified AC samples

FT-IR spectra of modified AC samples were shown in Figs. S-1a and b. For oxidized AC (Fig. S-1a), the peak at 3430 cm^{-1} is attributed to O–H stretching vibrations of the absorbed water molecules and the structural OH groups (phenol, alcohol, and carboxylic acid). The peak at 1725 cm^{-1} is related to C=O stretching in ketones and carboxylic acids and the peak at 1705 cm^{-1} is associated to C=O stretching in lactones. The broad peak at 1100 cm^{-1} is corresponded to C–O stretching vibrations. The two bands at $2850-2950 \text{ cm}^{-1}$ and the peak at 1628 cm^{-1} are assigned to C–H and C=C stretching vibrations, respectively. As shown in Fig. S-1b, for the nitrogen-modified AC, the –NH₂ and –OH groups were indicated by the peaks at $3330 \text{ and } 3444 \text{ cm}^{-1}$, respectively. The peaks at $1150 \text{ and} 1220 \text{ cm}^{-1}$ were attributed to –C–N (aliphatic and aromatic) stretching vibration. As it can be seen from this Figure, most of the carboxylic acid groups were eliminated from the surface of OAC by urea treatment of this sample; this is reflected by disappearance of the 1725 cm^{-1} band in the spectrum of NOAC sample, which exists in the spectra of the oxidized AC sample.

^{*}Corresponding author. E-mail: akhalighv@gmail.com

Fig. S-2. Final pH versus initial pH plots for pristine, oxidized and nitrogen modified AC samples.

S218

KHALIGH et al.

SUPPLEMENTARY MATERIAL

Fig. S-3. First order derivative spectra of BR46 and BY13 in binary solutions in the range of $5-20 \text{ mg L}^{-1}$ of each two dyes concentration.

Fig. S-4. Langmuir plots for the adsorption of BY13 and BR46 dyes onto NOAC in single and binary dye solutions ($V_{\text{solution}}=100 \text{ mL}$, $C_{\text{single}}=200=400 \text{ mg L}^{-1}$, $C_{\text{mix}}=150\text{-}300 \text{ mg L}^{-1}$, pH=9, m=30 mg, t=8 min, T=25 °C).

Fig. S-5. Pseudo-second order kinetic plots for the adsorption of BY13 and BR46 dyes onto NOAC in binary dye solution (100 mL of 150 mg L⁻¹ dyes solution, pH=9, m=30 mg, t= 2-6 min, T=25 °C).

S220

SUPPLEMENTARY MATERIAL

Fig. S-6. Effect of solvent type and concentration on the desorption of: a) BY13 and b) BR46 dyes from loaded NAC (desorption solvent volume 100 mL, spent NOAC = 30 mg, t = 8 min, T = 25 °C).

|--|

		-		•
Chemical structure	Commercial name	C. I. number	$\lambda_{\rm max}$ / nm	Molecular weigth g mol ⁻¹
	Basic Red 46	110825	530	401.3
$\begin{array}{c} CH_3 \\ N \\ N \\ N \\ N \\ CH_3 \\ CH_3 \\ H_3 $				
H_3C CH_3 H H H CH_3 H H H CH_3 H	Basic Yellow 13	48056	411	342.86

TABLE S-II. Initial dye concentrations in single and binary systems

Single	system	Binary S	bystem (1)	Binary S	ystem (2)
c_0 , BR46 mg L ⁻¹	c_0 , _{BY13} mg L ⁻¹	c_0 , BR46 mg L ⁻¹	c_0 , BY13 mg L ⁻¹	c_0 , BR46 mg L ⁻¹	c_0 , BY13 mg L ⁻¹
200-400	200-400	150–350 150	150 150–350	150-350	150-350

KHALIGH et al.

Error, % $c_{\rm t}$ / mg L⁻¹ $c_{\rm m}/{\rm mg}{\rm L}^2$ Recovery, % C_{BY} C_{BR} C_{BY} C_{BR} C_{BY} C_{BR} C_{BY} C_{BR} 5.06 96.60 101.20 -3.40+1.205 5 4.83 8 8 8.20 97.25 -2.757.78 102.50 +2.510 10 10.20 9.65 102.00 96.50 +2.00-3.5015 15 15.18 14.70 101.20 98.00 -1.20-2.0018 18 17.24 17.40 95.78 96.67 -4.22-3.3320 20 20.25 20.38 101.25 101.90 +1.25+1.90

TABLE S-III. Determination of percentage recovery and error values for BR46 and BY13 in binary mixture by zero and first order derivative spectra methods

TABLE S-IV. $R_{\rm L}$ values for BY13 and BR46 dyes in single and binary solutions

$c_0 / \text{mg L}^{-1}$	$R_{\rm L}$ of BY13		$R_{\rm L}$ of BR46		
	Single	Binary	Single	Binary	
150	_	0.020	_	0.020	
200	0.026	0.015	0.026	0.014	
250	0.021	0.012	0.020	0.011	
300	0.018	0.010	0.017	0.009	
350	0.015	0.008	0.015	0.008	
400	0.013	_	0.013	_	