1	SUPPLEMENTARY MATERIAL TO					
2	Determination of enol form of asymmetric 1,3-dicarbonyl compounds: 2D NMR data and					
3	DFT calculations					
4	MELTEM TAN, İSHAK BİLDİRİCİ and NURETTİN MENGES					
5	Faculty of Pharmacy, Yüzüncü Yil University, 65080, Van, Turkey					
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						

35	Table of Contents
36	General procedures and methodspage 3
37	Synthesis of 1-10page 3
38	NMR spectra (¹ H, ¹³ C)page 8
39	FT-IR spectrapage 18
40	HR-MS spectrapage 23
41	Dihedral angle scanning of the compoundspage 28
42	HMBC spectrapage 31
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	

69 Experimental Section

General Methods: NMR spectra were recorded on a 400 MHz spectrometer. Infrared (IR) spectra
 were recorded in the range 4000-600 cm⁻¹ via ATR diamond. Melting points were determined
 using a melting point apparatus and were uncorrected. Mass spectra were recorded by LC-MS
 TOF electrospray ionization technique. Column chromatography was performed on silica gel (60 mesh), TLC was carried out on 0.2 mm silica gel 60 F254 analytical aluminium plates. Evaporation

- of solvents was performed at reduced pressure, using a rotary vacuum evaporator.
- 76 Syntheses:
- 77

78 General procedure for synthesis of the compounds 1-10:

Acetyl ketone (1 equiv) was added to dry 1,4-dioxane and NaH (60% oil suspension, 5 equiv) was
added by pieces to the mixture at ice-bath. It was stirred at room temperature for 1 h. Related ester
(5 equiv) was added to the mixture and refluxed for 1 h. After cooling 10% HCl solution was
added to the reaction mixture and extracted with CH₂Cl₂ (3×20 mL). Crude product dried on
MgSO₄. Recrystallization or column chromatography gave the product, which was dried *in vacuo*(25 °C, 0.5 mbar), affording spectroscopically pure product.¹

85

86 Synthesis of 1-(2,6-dimethoxyphenyl)-3-phenylpropane-1,3-dione (1)

1-(2,6- dimethoxphenyl)ethanone (0.72 g, 4 mmol) and ethyl benzoate (2,8 mL, 20 mmol) reacted
according to general procedure. Column chromatography heksan/ethyl acetate (5:1) gave the
product as a white crystals in 95% yield (1,113 g). Mp: 85-88 °C.²

- 90 1 H-NMR (400 MHz, CDCl₃) δ 16.13 (bs, 1H, OH), 7.92-7.90 (m, 2H, Ar-H), 7.53-7.49 (m, 1H,
- 91 Ar-H), 7.47-7.42 (m, 2H, Ar-H), 7.33 (t, J_{5,4}=8.4 Hz, 1H, H-5), 6.61 (d, J_{4,5}=8.4 Hz, 2H, H-4 and
- 92 H-6), 6.4 (s, 1H, H-13), 3.83 (s, 6H, H-8 and H-12); ¹³C-NMR (100 MHz, CDCl₃) δ 189.4, 181.5,
- 93 157.7, 135.0, 132.1, 131.2, 128.5, 127.1, 117.2, 104.2, 100.6, 56.1; IR (ATR, cm⁻¹) 2921, 2989,
- 94 1681, 1598, 1582, 1495, 1469, 1453, 1424, 1323, 1287, 1247, 1176, 1111, 1071; HR-MS m/z
- 95 $(M+H)^+$ (C₁₇H₁₇O₄) theoretical: 285.1121; experimental: 285.1119.
- 96

97 Synthesis of 1-phenyl-3-(2,4,6-trimethoxyphenyl)propane-1,3-dione (2)

- 98 1-(2,4,6-trimethoxyphenyl)ethanone (0.84 g, 4 mmol) and ethyl benzoate (2,8 mL, 20 mmol)
- 99 reacted according to general procedure. Column chromatography heksan/ethyl acetate (5:1) gave
- 100 the product as a honey yellow crystals in 87% yield (1,09 g). Mp: 95-98 $^{\circ}C.^{3}$
- 101 ¹H-NMR (400 MHz, CDCl3) δ 16.23 (bs, 1H, OH), 7.91-7.89 (m, 2H, Ar-H), 7.52-7.48 (m, 1H,
- 102 Ar-H), 7.46-7.42 (m, 2H, Ar-H), 6.41 (s, 1H, H-15), 6.16 (s, 2H, H-4 and H-6), 3.85 (s, 3H, H-

- 103 14), 3.82 (s, 6H, H-8 and H-12); ¹³C-NMR (100 MHz, CDCl3) δ 188.7, 181.3, 162.8, 159.1, 135.3,
- 104 131.9, 128.5, 127.0, 110.3, 101.0, 90.8, 56.1, 55.5; IR (ATR, cm-1) 2969, 2940, 2838, 1698, 1682,
- 105 1585, 1490, 1452, 1411, 1331, 1274, 1226, 1203, 1185, 1154, 1123; HR-MS m/z $(M+H)^+$
- 106 ($C_{18}H_{19}O_5$) theoretical: 315.1227; experimental: 315.1224.
- 107

108 Synthesis of 1-(2,6-dimethoxyphenyl)butane-1,3-dione (3)

- 109 1-(2,6-dimethoxyphenyl)ethanone (0.54 g, 3 mmol) and ethyl acetate (1,47 mL, 15 mmol) reacted
 110 according to general procedure. Column chromatography heksan/ethyl acetate (5:1) gave the
 111 product as a bright gel-like in 54% yield (0,852 g).⁴
- ¹H-NMR (400 MHz, CDCl₃) δ 15.54 (bs, 0.8 H, OH), 7.32-7.27 (m, 1.75 H, keto and enol H-5),
- 113 6.59-6.55 (m, 3H, keto and enol H-4 ve H-6), 5.71 (s, 0.8 H, enol H-13), 3.88 (s, 0.8 H, keto H-
- 114 13), 3.81 (s, 8.5 H, keto and enol H-8 and H-12), 2.29 (s, 1H, keto H-16), 2.12 (s, 3H, H-16); ¹³C-
- 115 NMR (100 MHz, CDCl₃) δ 189.5, 186.8, 157.6, 131.1, 116.4, 104.1, 104.0, 56.0, 24.6 (enol form),
- 116 201.8, 197.3, 157.0, 131.7, 119.2, 104.1, 60.1, 55.8, 30.2 (keto form); HR-MS m/z (M+H)⁺
- 117 $(C_{12}H_{15}O_4)$ theoretical: 223.0965; experimental: 223.0964.
- 118

119 Synthesis of 1-(2,4,6-trimethoxyphenyl)butane-1,3-dione (4)

- 120 1-(2,4,6-trimethoxyphenyl)ethanone (0.63 g, 3 mmol) and ethyl acetate (1,47 mL, 15 mmol)
- reacted according to general procedure. Column chromatography heksan/ethyl acetate (5:1) gave the product as a light yellow solid in 86% yield (0,653 g). Mp: 99-102 $^{\circ}$ C.⁵
- ¹H-NMR (400 MHz, CDCl₃) δ 15.65 (bs, 1H, OH), 6.12 (s, 2H,enol H-4 ve H-6), 6.09 (s, 1H,
- 124 keto H-4 and H-6), 5.71 (s, 1H, enol H-15), 3.85 (s, 1H, keto H-15), 3.83 (s, 5 H, keto and enol H-
- 125 14), 3.80 (s, 10H, keto and enol H-8 ve H-12), 2.26 (s, 1.5H, keto H-18), 2.10 (s, 3H, enol H-18);
- ¹³C-NMR (100 MHz, CDCl₃) δ 189.5, 186.0, 162.6, 159.0, 104.3, 90.8, 90.6, 56.0, 55.8, 24.8 (enol
- form), 202.4, 195.9, 163.3, 159.1, 112.4, 109.6, 60.5, 55.5, 55.4, 30.1 (keto form); HRMS m/z
- 128 $(M+H)^+$ (C₁₃H₁₇O₅) theoretical: 253.1071; experimental: 253.1064.
- 129

130 Synthesis of 1,3-di(naphthalen-1-yl)propane-1,3-dione (5)

- 131 1-acetyl naphthalene (0.3 mL, 2 mmol) and ethyl-1-naftoat (1,8 mL, 10 mmol) reacted according
- to general procedure. Column chromatography heksan/ethyl acetate (8:1) gave the product as a
- light yellow crystal in 89% yield (0,58 g). Mp: $104-108 \text{ °C.}^6$
- 134 ¹H-NMR (400 MHz, CDCl₃) δ 8.61 (d, 2H, Ar-H), 8.00 (d, 2H, Ar-H), 7.92 (d, 2H, Ar-H), 7.84
- 135 (dd, 2H, Ar-H), 7.64-7.58 (m, 3H, Ar-H), 7.56-7.53 (m, 3H, Ar-H), 6.60 (s, 1H, H-13); ¹³C-NMR
- 136 (100 MHz, CDCl₃) δ 188.2, 133.4, 132.9, 130.9, 129.2, 127.6, 126.4, 126.3, 125.4, 124.6, 123.8,

- 137 102.1; IR (ATR, cm⁻¹) 3041, 1708, 1673, 1593, 1574, 1527, 1506, 1459, 1423, 1384, 1364, 1338,
- 138 1290, 1278, 1243, 1194, 1123, 1065; HRMS m/z (M+H)⁺ (C₂₃H₁₇O₂) theoretical: 325.1223; 139 experimental: 325.1219.
- 140

141 Synthesis of 1-(naphthalen-1-yl)butane-1,3-dione (6)

142 1-acetyl naphthalene (0.75 mL, 5 mmol) and ethyl acetate (2.45 mL, 25 mmol) reacted according

to general procedure. Column chromatography heksan/ethyl acetate (5:1) gave the product in 81%

- 144 yield $(0,766 \text{ g}).^7$
- ¹H-NMR (400 MHz, CDCl₃) δ 16.12 (bs, 1H, OH), 8.46 (m, 1H, Ar-H), 7.96 (m, 1H, Ar-H), 7.89
- 146 (m, 1H, Ar-H), 7.72 (m, 1H, Ar-H), 7.59-7.48 (m, 3H, Ar-H), 6.04 (s, 1H, H-13), 2.22 (s, 3H, H-
- 147 16); ¹³C-NMR (100 MHz, CDCl3) δ 191.4, 187.3, 133.3, 132.8, 130.6, 129.1, 127.5, 126.2, 125,9,
- 148 125.3, 124.5, 123.7, 100.7, 24.4; IR (ATR, cm-1) 3048, 1717, 1575, 1508, 1418, 1392, 1363, 1339,
- 149 1280, 1244, 1210, 1173, 1123, 1068; HRMS m/z (M+H)+ (C14H13O2) theoretical: 213.0910;
- 150 experimental: 213.0905.
- 151

152 Synthesis of 1-(naphthalen-1-yl)-3-phenylpropane-1,3-dione (7)

- Acetophenone (0.58 mL, 5 mmol) and ethyl-1-naftoate (4.5 mL, 25 mmol) reacted according to general procedure. Column chromatography heksan/ethyl acetate (8:1) gave the product as a yellow crystal in 80% yield (1 g). Mp: 60-63 °C.⁸
- ¹H-NMR (400 MHz, CDCl₃) δ 8.53 (m, 1H, Naf-H), 8.01-7.98 (m, 3H, Ar-H, Naf-H), 7.92 (m,
- 157 1H, Naf-H), 7.83 (m, 1H, Naf-H), 7.62-7.54 (m, 4H, Ar-H, Naf-H), 7.52-7.48 (m, 2H, Ar-H), 6.73
- 158 (s, 1H, H-13); ¹³C-NMR (100 MHz, CDCl₃) δ 188.5, 182.4, 133.1, 133.0, 131.8, 130.5, 129.7,
- 159 128.1, 126.7, 126.5, 125.3, 125.2, 125.0, 124.4, 123.6, 122.8, 96.2; IR (ATR, cm⁻¹) 3045, 2952,
- 160 2922, 2853, 1722, 1603, 1590, 1542, 1508, 1462, 1420, 1388, 1287, 1256, 1229, 1210, 1178, 1157,
- 161 1123, 1086, 1066; HRMS m/z (M+H)⁺ (C₁₉H₁₅O₂) for theoretical: 275.1067; experimental: 275. 162 1064.
- 163

164 Synthesis of 1-(3-bromothiophene-2-yl)butane-1,3-dione (8)

- 3-bromo-2-acetyl thiophene (1.025 g, 5 mmol) and ethyl acetate (2.45 mL, 25 mmol) reacted
 according to general procedure. Column chromatography heksan/ethyl acetate (4:1) gave the
 product as a yellow solid in 53% yield (0.65 g). Mp: 55-58 °C.
- 168 ¹H-NMR (400 MHz, CDCl₃) δ 15.88 (bs, 1H, OH), 7.51 (d, $J_{2,3}$ =5.2 Hz, 1H, H-2), 7.10 (d, $J_{3,2}$ =5.2
- 169 Hz, 1H, H-3), 6.56 (s, 1H, H-9), 2.19 (s, 3H, H-12); ¹³C-NMR (100 MHz, CDCl₃) δ 190.9, 178.8,
- 170 135.4, 133.5, 130.8, 112.6, 97.9, 24.9; IR (ATR, cm⁻¹) 3101, 2915, 1716, 1698, 1559, 1540, 1499,

- 171 1458, 1398, 1363, 1350, 1255, 1179, 1151; HRMS m/z (M+Na)⁺ (C₈H₇BrNaO₂S) theoretical:
- 172 268.9242; experimental: 268.9242.
- 173

174 Synthesis of 1,3-di(thiophen-2-yl)propane-1,3-dione (9)

- 175 1-(thiophen-2-yl)ethanone (0.43 mL, 4 mmol) and ethyl thiophene-2-carboxylate (2.7 mL, 20
- 176 mmol) reacted according to general procedure. Column chromatography heksan/ethyl acetate
- 177 (5:1) gave the product as a lemon yellow solid in 78% yield (0.736 g). Mp: 99-101 $^{\circ}C.^{9}$
- 178 ¹H-NMR (400 MHz, CDCl₃) δ 16.18 (bs, 1H, OH), 7.78 (dd, *J*_{4,2}=1.2 Hz, *J*_{4,3}=3.8 Hz, 2H, H-4),
- 179 7.62 (dd, *J*_{2,3}=4.9 Hz, *J*_{2,4}=1.2 Hz, 2H, H-2), 7.17 (t, *J*_{3,2}=4.9 Hz, *J*_{3,4}=3.8 Hz, 2H, H-3), 6.54 (s,
- 180 1H, H-8); ¹³C-NMR (100 MHz) δ 176.3, 138.2, 129.5, 127.5, 125.8, 90.2; IR (ATR, cm⁻¹) 3102,
- 181 3080, 1526, 1406, 1336, 1276, 1228; HR-MS m/z (M+H)⁺ (C₁₁H₉O₂S₂) theoretical: 237.0038;
- 182 experimental: 237.0037.
- 183

184 Synthesis of 1-(thiophen-2-yl)butane-1,3-dione (10)

- 2-acetyl thiophene (0.54 mL, 5 mmol) and ethyl acetate (2.45 mL, 25 mmol) reacted according to
 general procedure. Column chromatography heksan/ethyl acetate (5:1) gave the product as a brick
- 187 red solid in 90% yield (0.80 g). Mp: 44-48 °C.¹⁰
- 188 ¹H-NMR (400 MHz, CDCl₃) δ 15.65 (bs, 1H, OH) 7.69 (dd, *J*_{4,2}=1.2 Hz, *J*_{4,3}=3.8 Hz, 1H, H-4),
- 189 7.60 (dd, *J*_{2,3}=4.9 Hz, *J*_{2,4}=1.2 Hz, 1H, H-2), 7.13 (t, *J*_{3,2}=4.9 Hz, *J*_{3,4}=3.8 Hz, 1H, H-3), 6.03 (s,
- 190 1H, H-8), 2.14 (s, 3H, H-11); ¹³C-NMR (100 MHz, CDCl₃) δ 187.3, 181.7, 141.7, 132.3, 130.2,
- 191 128.2, 96.5, 23.9; IR (ATR, cm⁻¹) 3105, 1698, 1558, 1515, 1425, 1404, 1368, 1354, 1268, 1236;
- 192 HRMS m/z (M+Na)⁺ (C₈H₈NaO₂S) theoretical: 191.0137; experimental: 191.0137.
- 193
- 194

195 **REFERENCES**

- 196
- 197 1. J. Berger, L. A. Flippin, R. Greenhouse, S. Jaime-Figueroa, Y. Liu, A. K. Miller, D. G.
- 198 Putman, K. K. Weinhardt, S.H. Zhao, United States Patent, 5.863.924 (1999).
- 199 2. J. Zawadiak, M. Mrzyczek, Spectrochim Acta A. 96 (2012) 815
- 200 3. T. Emilewicz, S. Kostanecki, J. Tambor, *Chem. Ber.* **32** (1899) 2448.
- 201 4. K. Ahluwalia, *Indian J. Chem. B* **15** (1977) 514.
- 202 5. E. Jochum, S. Kostanecki, *Chem. Ber.* **37** (1904) 2099.
- 203 6. N.V. Dubrovina, V.L. Tararov, A. Monsees, R. Kadyrov, C. Fischer, A. Börner, Tetrahedron-
- 204 Asymmetr. **14** (2003) 2739.

205	7. A.M. El-M	etwally, Egypt. J.	Chem.	54 (2011) 1	129.
-----	--------------	--------------------	-------	--------------------	------

- 206 8. E.V. Gukhman, V.A. Reutov, Russ. J. Gen. Chem. 69 (1999) 1608.
- 207 9. S.R. Harris, R. Levine, J. Am. Chem. Soc. 70 (1948) 3360.
- 208 10. G. Rai, C.J. Thomas, W. Leister, D.J. Maloney, *Tetrahedron Lett.* **50** (2009) 1710.

Fig. S1. ¹H NMR (400 MHz, CDCl₃) spectrum of 1.

Fig. S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of **1**.

Fig. S3. ¹H NMR (400 MHz, CDCl₃) spectrum of **2.**

232 Fig. S4. ¹³C NMR (400 MHz, CDCl₃) spectrum of 2

Fig. S5. 1H NMR (400 MHz, CDCl₃) spectrum of 3.

235 **Fig. S6**. ¹³C NMR (100 MHz, CDCl₃) spectrum of **3**.

Fig. S7. ¹H NMR (400 MHz, CDCl₃) spectrum of **4.**

Fig. S8. ¹³C NMR (100 MHz, CDCl₃) spectrum of **4**.

Fig. S9. ¹H NMR (400 MHz, CDCl₃) spectrum of **5.**

Fig. S10. ¹³C NMR (100 MHz, CDCl₃) spectrum of **5**.

Fig. S11. ¹H NMR (400 MHz, CDCl₃) spectrum of **6.**

Fig. S12. ¹³C NMR (100 MHz, CDCl₃) spectrum of **6**.

Fig. S13. ¹H NMR (400 MHz, CDCl₃) spectrum of **7.**

Fig. S14. ¹³C NMR (100 MHz, CDCl₃) spectrum of **7**.

Fig. S15. ¹H NMR (400 MHz, CDCl₃) spectrum of **8.**

Fig. S16. ¹³C NMR (100 MHz, CDCl₃) spectrum of **8**

Fig. S17. ¹H NMR (400 MHz, CDCl₃) spectrum of **9.**

Fig. S18. ¹³C NMR (100 MHz, CDCl₃) spectrum of **9**.

Fig. S19. ¹H NMR (400 MHz, CDCl₃) spectrum of **10.**

Fig. S20. ¹³C NMR (100 MHz, CDCl₃) spectrum of **10**

252 Fig. S21. IR (ATR, cm^{-1}) spectrum of 1.

253 **Fig. S22.** IR (ATR, cm⁻¹) spectrum of **2**.

Fig. S25. IR (ATR, cm⁻¹) spectrum of **5.**

Fig. S26. IR (ATR, cm^{-1}) spectrum of **6**.

Fig. S31. HR-MS $(m/z (M+H)^+)$ spectrum of **1**.

Fig. S32. HR-MS $(m/z (M+H)^+)$ spectrum of **2**.

Fig. S33. HR-MS $(m/z (M+H)^+)$ spectrum of **3**.

Fig. S34. HR-MS $(m/z (M+H)^+)$ spectrum of **4**.

Fig. S35. HR-MS $(m/z (M+H)^+)$ spectrum of **5**.

Fig. S36. HR-MS $(m/z (M+H)^+)$ spectrum of **6**.

Fig. S37. HR-MS $(m/z (M+H)^+)$ spectrum of **7**.

Fig. S38. HR-MS $(m/z (M+Na)^+)$ spectrum of **8**.

Fig. S39. HR-MS $(m/z (M+H)^+)$ spectrum of **9**.

Fig. S40. HR-MS $(m/z (M+Na)^+)$ spectrum of **10**.

Fig. S41. a. Dihedral angle scanning of the enol form 1a (most and least stable conformers); b.
Dihedral angle scanning of the enol form 1b (most and least stable conformers).

Fig. S42. a. Dihedral angle scanning of the enol form 2a (most and least stable conformers); b.
Dihedral angle scanning of the enol form 2b (most and least stable conformers).

Fig. S44. HMBC spectrum of the compound **1**.

Fig. S45. HMBC spectrum of the compound **2**.

Fig. S46. HMBC spectrum of the compound **3**.

Fig. S47. HMBC spectrum of the compound **4**.

Fig. S48. HMBC spectrum of the compound 6.

