1	Supplementary Material
2	
3	Evaluating the scientific performance of institutions within the university: an example
4	from the University of Belgrade
5 6	······································
7	IVAN PILCEVIC ^{1*} , VELJKO JEREMIC ¹ and DUSAN VUJOSEVIC ²
8	¹ Faculty of Organizational Sciences, University of Belgrade
9	² The Faculty of Computer Science, Union University
10	*Corresponding author: ivan.pilcevic@gmail.com
11	
12	As we can see from TABLE Ia, the Institute Vinča leads the way with 2100 published papers.
13	In addition, the quality of the journals in which those papers were published is quite high. The
14	median value of indicator AVG_JIF_PERCENTILE is 66.309, meaning that half the Vinča
15	papers came out in journals which are in top 33.691% in their respective JCR subject category.
16	
17 18	TABLE Ia. Number of published papers, median and interquartile range for indicator Average Journal Impact Factor Percentile for five leading institutes

Journal Impact Factor Percentile for five leading institutes Inst Inst Inst Inst Inst Vinca ICTM **Biol Res** Mult Res Phys Number 2100 954 1163 1109 531 of papers Median 66.309 55.195 74.423 65.382 63.057 AVG_JIF_PERCENTILE IQR 35.965 41.114 47.165 33.950 44.056

20 A remarkable result was achieved by the Institute of Physics. Fully half of its papers were published in journals which are placed in top 25.577% of the respective JCR subject category. 21 On the other hand, the Institute for Biological Research "Siniša Stanković" has the lowest 22 median value and highest interquartile range (IQR) among the top institutes (large variability 23 of the observed indicator), meaning that its performance is weaker than the previously 24 25 mentioned institutes.

27 28

TABLE Ib. Number of published papers, median and interquartile range for indicato	r Average
Journal Impact Factor Percentile for Faculties of Medical Sciences	

		Fac	Fac	Fac	Fac
		Med	Pharm	Vet Med	Dent
_	Number of papers	2456	780	287	312
AVC HE DEDCENTHE	Median	40.256	51.611	33.784	32.916
AVG_JIF_FERCENTILE	IQR	50.676	48.711	41.063	59.661

Our results show that the Faculty of Medicine has the largest number of published papers (2456), but that they are published in journals with lower ratings on the *AVG_JIF_PERCENTILE* indicator than those of the Institute Vinča and the Institute of Physics. A similar conclusion can be deduced for both the Faculty of Veterinary Medicine and the Faculty of Dental Medicine, while the Faculty of Pharmacy with a median value of 51.611 for indicator *AVG_JIF_PERCENTILE* has the best performance in the group of Faculties of Medical Sciences (TABLE Ib).

36

37 38

TABLE Ic. Number of published papers, median and interquartile range for indicator AverageJournal Impact Factor Percentile for Faculties of Sciences and Mathematics

		Fac	Fac	Fac	Fac	Fac
		Biol	Chem	Phys Chem	Phys	Math
	Number of papers	950	974	602	383	365
AVC HE DEDCENTH E	Median	44.031	63.057	68.375	76.866	62.071
AVG_JIF_PERCENTILE	IQR	44.709	40.626	38.579	24.451	44.967

39

In the group of Faculties of Sciences and Mathematics, the Faculty for Physical Chemistry and
the Faculty of Physics stand out. Half of the papers from the Faculty for Physical Chemistry are
published in the top 31.625% of journals, while half of the papers written by authors from the
Faculty of Physics are in the top 23.134% of journals (TABLE Ic).

45 TABLE Id. Number of published papers, median and interquartile range for indicator *Average*

Journal Impact Factor Percentile for Faculties of Technology and Engineering Sciences (top
 5 in terms of number of published papers)

	5 in terms of number of published papers)					
		Fac	Fac	Fac	Fac	Fac
		Techn Met	Elect Eng	Mech Eng	Agr	Min Geol
	Number of papers	1343	697	692	619	378
AVC HE DEDCENTHE	Median	63.333	60.294	55.455	47.283	49.156
AVO_JIF_PERCENTILE	IQR	45.901	41.516	44.625	47.159	48.453

48

51

TABLE Ie. Number of published papers, median and interquartile range for indicator *Average Journal Impact Factor Percentile* for Faculties of Technology and Engineering Sciences

		(res	st^1)			
		Fac	Fac	Fac	Fac	Fac
		Org Sci	Tech Bor	Transport	Forestry	Civil Eng
	Number of papers	333	264	224	205	182
AVC HE DEDCENTH E	Median	39.091	46.019	55.532	28.313	44.815
AVG_JIF_PERCENTILE	IQR	46.991	42.420	46.795	37.393	48.895

¹ The Faculty of Architecture and Faculties of Social Sciences and Humanities group have not been presented due to the relatively small number of published papers

Among Faculties of Technology and Engineering Sciences, the Faculty of Technology and Metallurgy leads the way with more than 1300 published papers, half of those having appeared in the top 36.667% of journals (TABLE Id). Among Faculties of Technology and Engineering Sciences with fewer published papers (TABLE Ie), the Faculty of Transport and Traffic Engineering exhibits the best performance, with a median value for the indicator *Average Journal Impact Factor Percentile* of 55.532 (meaning that half of its papers were published in the top 44.468% of journals.

61

In addition to the indicator which represented the quality of the journals in which researchers 62 from the University of Belgrade published their papers, we performed percentile-based analysis 63 in terms of the quality of the published papers from 2009 to 2014. All of the JCR indexed 64 journals are classified in one of the 22 research fields and for each field a baseline number for 65 article citation score has been determined so the paper can be classified in a certain percentile 66 group for the year in which it was published. According to Web of Science (Percentiles, 2017), 67 7 groups were determined: (I) Top 0.01%, (II) Top 0.01-0.1%, (III) Top 0.1-1%, (IV) Top 1-68 10%, (V) Top 10-20%, (VI) Top 20-50%, (VII) bottom-half. Our results showed that the 69 University of Belgrade does not have any articles in the first percentile group, only four papers 70 belong to group two, while 26 papers are in percentile group three. Consequently, we merged 71 the first three groups and presented the results (FIGURES 1a-1e) as: (I) Top 1%, (II) Top 1-72 10%, (III) Top 10-20%, (IV) Top 20-50%, (V) bottom-half. 73

74

As we can see from Figure 1a, researchers from the Institute Vinča published a considerable 75 76 number of cited papers. Namely, 0.2% of their papers are in the group of highly-cited papers (Top 1%), 5.1% papers are in the second group (papers which are in Top 1-10% by citations in 77 78 research field), 7.82% of papers are in group of Top 10-20%, 29.93% of papers are in the category Top 20-50%, while 56.94% are, based on citation, in bottom-half. Among the leading 79 institutes, the Institute for multidisciplinary studies performs quite well with only 49.47% of 80 papers in bottom-half (the best result among the leading institutes). On the other hand, the 81 82 Faculties of Medical Sciences are far below these results, as can be seen from FIGURE 1b.

83

84

85

87 88

89 90

FIGURE 1b. Percentage of papers belonging to certain percentile group (Faculties of Medical
 Sciences)

95 Although the Faculty of Biology has, besides the Faculty of Chemistry, the largest number of 96 published papers among Faculties of Sciences and Mathematics, they are less cited than the 97 other faculties from the group with 70.14% of papers origination from the Faculty of Biology 98 appearing in bottom-half of the citation metrics (FIGURE 1c). On the other hand, the Faculty 99 of Technology and Metallurgy (FIGURE 1d) is shown to have not only a large number of 90 published papers but also a high citation score of those papers. In particular, 0.43% of papers are in the group of best papers (Top 1%), 7.04% of papers are in second group (papers rated as
Top 1-10% by citation in a certain research field for a particular year), 9.61% of papers
published by researchers from the Faculty of Technology and Metallurgy are in the Top 1020%, 28.82% of papers are in Top 20-50%, while 54.11% of papers are placed in bottom-half.
The results from the remaining Technology and Engineering Sciences Faculties are presented
in FIGURE 1e.

FIGURE 1c. Percentage of papers belonging to certain percentile group (Faculties of Sciences and Mathematics)

FIGURE 1d. Percentage of papers belonging to certain percentile group (Faculties of Technology and Engineering Sciences - top 5)

54.11%	55.82%	58.92%	62.20%	65.70%
28.82%	30.60%	25.52%	26.10%	27.69%
9.61%	7.97%	7.88%	6.59%	3.72%
7.04%	5.60%	5.19%	5.12%	2.89%
0.43%	0.00%	2.49%	0.00%	0.00%
Fac Techn Met	Fac Elect Eng	Fac Meh Eng	Fac Agr	Fac Min Geol

118 119

Particularly impressive is the performance of Faculty of Mathematics and Faculty of
Mechanical Engineering which exceed in terms of Top 1% publications, with 2.38% and 2.49%
respectively.

123

Researchers often emphasize the importance of presenting the results of collaboration patterns within a particular university^{1–3}. The institutions included in the analysis could be thought of as belonging to a network of collaboration⁴. It is possible to visualize this network through a network graph with the nodes' sizes representing the average value of indicator *Average Journal Impact Factor Percentile* of papers produced by institutions and the edges' widths representing the numbers of papers produced in collaboration (FIGURE 2).

130

The network graph of this study was made using Gephi, an open source software package for graph and network analysis^{5,6}. In addition to a visualisation, a network can be analysed in terms of its structure. The idea of analysing co-authorship through network graphs has already been used in the analysis of collaboration among particular researchers^{7,8}.

135

A co-authorship network is a type of a social network⁹, so analysis of its structure focuses on
identifying the most influential members¹⁰. The different types of influence in a network are
usually described with various centrality analyses, through: Degree Centrality, Eigenvector
Centrality, Closeness Centrality and Betweenness Centrality. In our study, Degree Centrality¹¹
will identify the institutions with many collaborations. The results of this analysis, together with

- other measurements, are presented in table (TABLE II). Eigenvector Centrality¹² will be higher 141 among influential institutions in the network¹¹. Closeness Centrality measures the average 142 distance to all other nodes from each node¹³, looking for the node that is closest to all other 143 nodes, indicating who is at the heart of a social network¹¹. For our network, the similarly defined 144 Harmonic Closeness Centrality indicator produces different values, but exactly the same order. 145 Betweenness Centrality measures the number of times that a particular node is the member of 146 the shortest path between two other nodes¹³. In our study, Betweenness Centrality describes 147 how much an institution connects to the circles of other institutions. 148
- 149
- 150

FIGURE 2: Network graph of the institutions' scientific productivity and cooperation

151 152

Inspired by web page-rank algorithms, the Hyperlink-Induced Topic Search (HITS) provides a measure of how valuable the information stored by a particular node is, and what the quality of the links to and from that particular node are¹². In our study, it will serve to pinpoint the institutions playing a hub role. Clustering Coefficients measure the level at which nodes are grouped together. Higher Clustering Coefficient scores reflect membership of tightly-knit social groups or clubs (cliques), while lower scores reflect the institutions out of cliques.

160	
161	

TABLE II: Centrality measures and other network description measures – Top five

Degree	Eigenvector	Closeness	Betweennes	HITS	Clustering	Triangles
Centrality	Centrality	Centrality	s Centrality		Coefficient	
					S	
Inst Vinca (23)	Inst Vinca	Inst Vinca (1)	Inst Vinca	Inst Vinca	Fac Org Sci	Inst Vinca
	(1)		(7.895)	(0.244)	(0.747)	(190)
Fac Techn Met	Fac Techn	Fac Techn Met	Inst Phys	Fac Techn	Inst Vinca	Fac Techn
(22), Inst Phys	Met (0.981)	(0.958)	(6.570)	Met	(0.751)	Met (183)
(22)				(0.240)		
	Inst Phys	Inst Phys (0.958)	Fac Techn	Inst Phys	Inst Phys	Inst Phys
	(0.965)		Met (5.275)	(0.236)	(0.766)	(177), Fac
Fac Biol (21),	Fac Biol	Fac Biol (0.92),	Fac Elect	Fac Biol	Fac Elect	Biol
Fac Agr (21),	(0.964)	ICTM Inst (0.92),	Engn (5.250)	(0.235),	Engn	(177), Fac
ICTM Inst		Fac Agr (0.92),		Fac Agr	(0.779)	Agr (177)
(21), Fac Mech	Fac Agr	Fac Mech Engn	Fac Mech	(0.235)	Fac Mech]
Engn (21)	(0.964)	(0.92)	Engn (4.787)		Engn	
					(0.790)	

163 164

REFERENCES

165		
166	1.	H. G. Ceballos, S. E. Garza, F. J. Cantu, Scientometrics 114 (2018) 181-216
167		(http://dx.doi.org/10.1007/s11192-017-2561-1).
168	2.	H. G. Ceballos, J. Fangmeyer, N. Galeano, E. Juarez, F. J. Cantu-Ortiz, Knowl. Manag.
169		Res. Pract. 15 (2017) 346-355 (http://dx.doi.org/10.1057/s41275-017-0064-8).
170	3.	M. Savić, M. Ivanović, B. Dimić Surla, Scientometrics 110 (2017) 195-216
171		(http://dx.doi.org/10.1007/s11192-016-2167-z).
172	4.	C. S. Wagner, T. A. Whetsell, L. Leydesdorff, Scientometrics 110 (2017) 1633-1652
173		(http://dx.doi.org/10.1007/s11192-016-2230-9).
174	5.	M. Bastian, S. Heymann, M. Jacomy, Gephi: An Open Source Software for Exploring
175		and Manipulating Networks Visualization and Exploration of Large Graphs, in Int.
176		AAAI Conf. Weblogs Soc. Media, 2009, pp. 361–362.
177	6.	G. González-Alcaide, J. Park, C. Huamaní, J. M. Ramos, PLoS One 12 (2017)
178		e0182513 (http://dx.doi.org/10.1371/journal.pone.0182513).
179	7.	J. L. Ortega, I. F. Aguillo, J. Informetr. 7 (2013) 394-403
180		(http://dx.doi.org/10.1016/J.JOI.2012.12.007).
181	8.	N. Aggrawal, A. Arora, Visualization, analysis and structural pattern infusion of DBLP
182		co-authorship network using Gephi, in 2016 2nd Int. Conf. Next Gener. Comput.
183		Technol., IEEE, 2016, pp. 494–500 (http://dx.doi.org/10.1109/NGCT.2016.7877466).
184	9.	C. Kadushin, Understanding social networks : theories, concepts, and findings, Oxford
185		University Press, 2012. https://global.oup.com/academic/product/understanding-social-
186		networks-9780195379471?cc=us⟨=en&.
187	10.	D. V Umadevi, Journal of Global Research in Computer Science, [s.n.], 2013.
188		http://jgrcs.info/index.php/jgrcs/article/view/577.
189	11.	J. Golbeck, Introduction to social media investigation : a hands-on approach,
190		Syngress, 2015.

- 191 12. K. Cherven, Mastering Gephi network visualization : produce advanced network
 192 graphs in Gephi and gain valuable insights into your network datasets, 2015.
 193 https://www.packtpub.com/networking-and-servers/mastering-gephi-network194 visualization.
- 13. R. Brath, D. Jonker, eds., *Graph Analysis and Visualization*, John Wiley & Sons, Inc.,
 Hoboken, NJ, USA, 2015 (http://dx.doi.org/10.1002/9781119183662).