1 Supplementary material

3	Continuous flow synthesis of some 6- and 1,6-substituted 4-methyl-3-cyano-2-pyridones
4	
5	JULIJANA TADIĆ ¹ , MARINA MIHAJLOVIĆ ¹ , MIĆA JOVANOVIĆ ² and DUŠAN MIJIN ²
6	¹ Innovation Center, Faculty of Technology and Metallurgy, University of Belgrade,
7	Karnegijeva 4, 11120 Belgrade, Serbia, ² Faculty of Technology and Metallurgy, University of
8	Belgrade, Karnegijeva 4, 11020 Belgrade, Serbia

9

2

10 The preparation of the reactant solutions for synthesis in continuous flow microreactor11 system

In the first set of the experiments the following solutions were made: acetylacetone (0.06 mol, 6.008 g) and ethylacetoacetate (0.06 mol, 7.808 g) were added to volumetric flasks, sequentially, then methanol was added up to a volume of 100 mL. The solution of Nsubstituted cyanoacetamide was made in the same way. The corresponding N-substituted cyanoacetamide (0.06 mol) was placed in a volumetric flask and deionized water was added up to a volume of 100 mL. Sodium hydroxide pellets (0.07 mol, 2.8 g) were dissolved in deionized water up to a volume of 100 mL.

In the second set of experiments compounds **1** and **2** were synthetized from the solutions prepared using the following procedure: acetylacetone (0.10 mol, 10.013 g) and ethyl acetoacetate (0.10 mol, 13.014 g) were placed in the volumetric flasks, sequentially, and methanol was added up to a volume of 100 mL. Cyanoacetamide (0.15 mol, 12.612 g) and NaOH pellets (0.2 mol, 8 g) were dissolved in the volumetric flasks, up to a volume of 100 mL in deionized water.

- The characterization data of the products obtained in the continuous flow microreactorsystem
- 27 4,6-dimethyl-3-cyano-2-pyridone (1)

White powder, Mp 285-286 °C (Lit. 290-291 °C¹); FT-IR (KBr, v/cm⁻¹): 3292 (N–H), 2219
(CN), 1659 (C=O); ¹H NMR (400 MHz, DMSO-d₆, δ/ppm): 2.23 (3H, s, 6-CH₃), 2.30 (3H, s, 4-CH₃), 6.17 (1H, s, C5), 12.32 (1H, s, O–H); UV-Vis (EtOH, λ_{max}/nm): 330.

- 31 6-hydroxy-4-methyl-3-cyano-2-pyridone (2)
- 32 White powder, Mp 315-317 °C (Lit. 315-320 °C²). FT-IR (KBr, v/cm⁻¹): 3294 (OH), 2223
- 33 (CN), 1593 (C=O); ¹H NMR (400 MHz, DMSO-d₆, δ/ppm): 2.51 (3H, s, CH₃), 5.61 (1H, s,
- 34 C5); UV-Vis (EtOH, λ_{max}/nm): 325.
- 35 *4,6-dimethyl-1-(2-hydroxyethyl)-3-cyano-2-pyridone (3)*

- 36 White powder, Mp 140-142 °C (Lit. 139-141 °C³), FT-IR (KBr, v/cm⁻¹): 2222 (CN), 1663
- 37 (C=O), 3268 (OH); ¹H NMR (400 MHz, DMSO-d₆, δ /ppm): 2.39 (3H, s, CH₃), 2.57 (3H, s,
- 38 CH₃), 3.71 (2H, m, CH₂), 4.11 (2H, t, J = 5.4 Hz, CH₂), 5.04 (1H, m, OH), 6.37 (1H, s, C5-
- 39 H); UV-Vis (EtOH, λ_{max}/nm): 334.
- 40 6-hydroxy-4-methyl-1-(2-hydroxyethyl)-3-cyano-pyridone (4)
- 41 White powder, Mp 172-174 °C (Lit. 171-172 °C⁴); FT-IR (KBr, v/cm⁻¹): 3367, 3268 (OH),
- 42 2223 (CN), 1663 (C=O); ¹H NMR (400 MHz, DMSO-d₆, δ/ppm): 2.20 (3H, s, CH₃), 3.51
- 43 (2H, t, J = 6.4 Hz, CH₂CH₂OH), 3.99 (2H, t, J = 6,6 Hz, CH₂CH₂OH), 5.58 (1H, s, C5); UV-
- 44 Vis (EtOH, λ_{max}/nm): 325.
- 45 *4,6-dimethyl-1-N-propyl-3-cyano-2-pyridone* (5)
- 46 White powder, Mp 110-112 °C (Lit. 114 °C¹); FT-IR (KBr, v/cm⁻¹): 2216 (CN), 1646 (C=O);
- 47 ¹H NMR (400 MHz, DMSO-d₆, δ/ppm): 0.98 (3H, t, J=7.4 Hz, CH₃CH₂), 1.67 (2H, m,
- 48 CH₃CH₂), 2.38 (3H, s, 4-CH₃), 2.59 (3H, s, 6-CH₃), 3.98 (2H, t, J=7.8 Hz, CH₂-N), 6.38 (1H,
- 49 s, 5-H); UV-Vis (EtOH, λ_{max}/nm): 324.
- 50 6-hydroxy-4-methyl-1-propyl-3-cyano-2-pyridone (6)
- 51 White powder, Mp 238-240 °C (Lit. 239-240 °C⁵), FT-IR (KBr, v/cm⁻¹): 1660 (C=O), 2210
- 52 (CN); ¹H NMR (400 MHz, DMSO-d₆, δ/ppm): 0.98 (3H, t, J=7.4 Hz, CH₃CH₂), 1.58 (2H, m,
- 53 CH₃CH₂), 2.20 (3H, s, CH₃), 3.98 (2H, t, J=7.2 Hz, CH₂-N), 5.58 (1H, s, 5-H); UV-Vis
- 54 (EtOH, λ_{max}/nm): 325.
- 55 Synthesis under conventional conditions
- 6- and 1,6-substituted-4-methyl-3-cyano-2-pyridones were prepared from corresponding 1,3 dicarbonyl reagent and N-substituted cyanoacetamides using a modified literature procedure.¹
- The procedure for the preparation of N-substituted-4,6-dimethyl-3-cyano-2-pyridone in the
 batch system
- Equimolar amounts of acetylacetone and the corresponding N-substituted cyanoacetamide (0.06 mol) were heated under reflux in a water/methanol mixture (120 mL) in the presence of NaOH (0.07 mol) as catalyst for 4 h, except for 4,6-dimethyl-3-cyano-2pyridone where the reaction time was 1 h. The products were isolated by filtration and purified by crystallization from ethanol.
- The procedure for the preparation of N-substituted-6-hydroxy-4-methyl-3-cyano-2-pyridone
 in the batch system
- Equimolar amounts of ethyl acetoacetate and the corresponding N-substituted cyanoacetamide (0.06 mol) were heated under reflux in a water/methanol mixture (120 mL) in the presence of NaOH (0.07 mol) as a catalyst for 8 h. The products were isolated by filtration and dissolved in 100 mL of hot water. After cooling, the solution was acidified with

- concentrated HCl to precipitate 2-pyridone. The final product was isolated by filtration,
 washed with deionized water and air dried.
- 74 References:

76 77	1.	D. Mijin, A. Marinković, <i>Synth. Commun.</i> 36 (2006) 193 (DOI: 10.1080/00397910500334421)
78	2.	D. Ž. Mijin, M. M. Mišić-Vuković, J. Serb. Chem. Soc. 59 (1994) 959
79 80	3.	A. F. El-Essawy, A. F. Khattab, J. Heterocyclic Chem. 41 (2004) 311 (DOI: 10.1002/jhet.5570410302)
81	4.	B. D.Tilak, N. R. Ayyangar, U. S. Rao, Indian J. Chem., Sect B 23 (1984) 18
82 83	5.	S. Balalaie, E. Kowsari, M.S. Hashtroudi, <i>Monat. Chem.</i> 134 (2003) 453 (DOI: 10.1007/s00706-002-0551-2).
84		
85		
86		
87		
88		
89		