
J. Serb. Chem. Soc. 84 (6) S130-S137 (2019)

SUPPLEMENTARY MATERIAL TO

Continuous flow synthesis of some 6 - and 1,6 -substituted

 3-cyano-4-methyl-2-pyridonesJULIJANA TADIĆ ${ }^{1}$, MARINA MIHAJLOVIĆ ${ }^{1}$, MIĆA JOVANOVIĆ ${ }^{2}$
and DUŠAN MIJIN ${ }^{2 *}$
${ }^{1}$ Innovation Center, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia and ${ }^{2}$ Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11020 Belgrade, Serbia J. Serb. Chem. Soc. 84 (6) (2019) 531-538

EXPERIMENTAL

Preparation of the reactant solutions for synthesis in continuous flow microreactor system
In the first set of experiments, the following solutions were made: acetylacetone $(0.06$ $\mathrm{mol}, 6.008 \mathrm{~g})$ and ethyl acetoacetate ($0.06 \mathrm{~mol}, 7.808 \mathrm{~g}$) and added to volumetric flasks, sequentially, then methanol was added up to a volume of 100 mL . The solution of N-substituted cyanoacetamide was made in the same way. The corresponding N-substituted cyanoacetamide (0.06 mol) was placed in a volumetric flask and deionized water was added up to a volume of 100 mL . Sodium hydroxide pellets $(0.07 \mathrm{~mol}, 2.8 \mathrm{~g})$ were dissolved in deionized water up to a volume of 100 mL .

In the second set of experiments, compounds $\mathbf{1}$ and $\mathbf{2}$ were synthesized from the solutions prepared using the following procedure: acetylacetone ($0.10 \mathrm{~mol}, 10.013 \mathrm{~g}$) and ethyl acetoacetate $(0.10 \mathrm{~mol}, 13.014 \mathrm{~g})$ were placed in volumetric flasks, sequentially, and methanol was added up to a volume of 100 mL . Cyanoacetamide ($0.15 \mathrm{~mol}, 12.612 \mathrm{~g}$) and NaOH pellets $(0.2 \mathrm{~mol}, 8 \mathrm{~g})$ were dissolved in deionized water in volumetric flasks up to a volume of 100 mL .
Work-up of the reaction mixture in the continuous flow microreactor system
The reaction mixture assembled in the microreactor was delivered to a test tube containing 1 mL of concentrated HCl . After 9 mL of the mixture was collected, resulting crystals were separated by filtration and washed with deionized water (2 times with 5 mL). Obtained crystals were air dried and analyzed without further purification.

Synthesis under conventional conditions

6- and 1,6-substituted 3-cyano-4-methyl-2-pyridones were prepared from corresponding 1,3-dicarbonyl reagent and N -substituted cyanoacetamides using a modified literature procedure. ${ }^{1}$

[^0]Procedure for the preparation of N-substituted 3-cyano-4,6-dimethyl-2-pyridone in the batch system

Equimolar amounts of acetylacetone and the corresponding N -substituted cyanoacetamide (0.06 mol) were heated under reflux in a water/methanol mixture (120 mL) in the presence of $\mathrm{NaOH}(0.07 \mathrm{~mol})$ as catalyst for 4 h , except for 3-cyano-4,6-dimethyl-2-pyridone where the reaction time was 1 h . The products were isolated by filtration and purified by crystallization from ethanol.
Procedure for the preparation of N -substituted 3-cyano-6-hydroxy-4-methyl-2-pyridone in the batch system

Equimolar amounts of ethyl acetoacetate and the corresponding N-substituted cyanoacetamide (0.06 mol) were heated under reflux in a water/methanol mixture $(120 \mathrm{~mL})$ in the presence of $\mathrm{NaOH}(0.07 \mathrm{~mol})$ as a catalyst for 8 h . The products were isolated by filtration and dissolved in 100 mL of hot water. After cooling, the solution was acidified with concentrated HCl to precipitate the 2-pyridone. The final product was isolated by filtration, washed with deionized water and air-dried.

CHARACTERIZATION DATA OF THE PRODUCTS OBTAINED IN THE CONTINUOUS FLOW MICROREACTOR SYSTEM

3-Cyano-4,6-dimethyl-2-pyridone (1). White powder; m.p.: 285-286 ${ }^{\circ} \mathrm{C}$ (Lit. 290-291 ${ }^{\circ} \mathrm{C}^{1}$); FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $3292(\mathrm{~N}-\mathrm{H}), 2219(\mathrm{C}-\mathrm{N}), 1659(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta / \mathrm{ppm}\right): 2.23\left(3 \mathrm{H}, s, 6-\mathrm{CH}_{3}\right), 2.30(3 \mathrm{H}, s$, $\left.4-\mathrm{CH}_{3}\right), 6.17(1 \mathrm{H}, s, \mathrm{C} 5-\mathrm{H}), 12.32(1 \mathrm{H}, s, \mathrm{OH}) ; \mathrm{UV}-\mathrm{Vis}\left(\mathrm{EtOH}, \lambda_{\max } / \mathrm{nm}\right): 330$.

3-Cyano-6-hydroxy-4-methyl-2-pyridone (2). White powder; m.p.: 315-317 ${ }^{\circ} \mathrm{C}$ (Lit. 315-320 ${ }^{\circ} \mathrm{C}^{2}$); FT-IR (KBr, cm^{-1}): $3294(\mathrm{OH}), 2223(\mathrm{CN}), 1593(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}, \delta / \mathrm{ppm}\right): 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 5.61(1 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-\mathrm{H})$; UV-Vis (EtOH, $\left.\lambda_{\max } / \mathrm{nm}\right): 325$.

3-Cyano-1-(2-hydroxyethyl)-4,6-dimethyl-2-pyridone (3). White powder; m.p.: $140-142{ }^{\circ} \mathrm{C}$ (Lit. $139-141^{\circ} \mathrm{C}^{3}$); FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $2222(\mathrm{CN}), 1663$ $(\mathrm{C}=\mathrm{O}), 3268(\mathrm{OH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta / \mathrm{ppm}\right): 2.39\left(3 \mathrm{H}, s, \mathrm{CH}_{3}\right)$, $2.57\left(3 \mathrm{H}, s, \mathrm{CH}_{3}\right), 3.71\left(2 \mathrm{H}, m, \mathrm{CH}_{2}\right), 4.11\left(2 \mathrm{H}, t, J=5.4 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.04(1 \mathrm{H}, m$, $\mathrm{OH}), 6.37(1 \mathrm{H}, s, \mathrm{C} 5-\mathrm{H})$; UV-Vis $\left(\mathrm{EtOH}, \lambda_{\max } / \mathrm{nm}\right): 334$.

3-Cyano-6-hydroxy-1-(2-hydroxyethyl)-4-methyl-2-pyridone (4). White powder; m.p.: $172-174{ }^{\circ} \mathrm{C}$ (Lit. $171-172^{\circ} \mathrm{C}^{4}$); FT-IR (KBr, cm^{-1}): 3367, 3268 (OH), $2223(\mathrm{CN}), 1663(\mathrm{C}=\mathrm{O})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta / \mathrm{ppm}\right): 2.20(3 \mathrm{H}, s$, CH_{3}), $3.51\left(2 \mathrm{H}, t, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.99(2 \mathrm{H}, t, J=6,6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 5.58(1 \mathrm{H}, s, \mathrm{C} 5-\mathrm{H})$; UV-Vis $\left(\mathrm{EtOH}, \lambda_{\max } / \mathrm{nm}\right): 325$.

3-Cyano-4,6-dimethyl-1-propyl-2-pyridone (5). White powder; m.p.: 110-$-112{ }^{\circ} \mathrm{C}$ (Lit. $114{ }^{\circ} \mathrm{C}^{1}$); FT-IR (KBr, cm^{-1}): $2216(\mathrm{CN}), 1646(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta / \mathrm{ppm}$): $0.98\left(3 \mathrm{H}, t, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.67(2 \mathrm{H}, m$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.38\left(3 \mathrm{H}, s, 4-\mathrm{CH}_{3}\right), 2.53\left(3 \mathrm{H}, s, 6-\mathrm{CH}_{3}\right), 3.98(2 \mathrm{H}, t, J=7.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}-\mathrm{N}\right), 6.38(1 \mathrm{H}, s, 5-\mathrm{H})$; UV-Vis (EtOH, $\left.\lambda_{\max } / \mathrm{nm}\right): 324$.

3-Cyano-6-hydroxy-4-methyl-1-propyl-2-pyridone (6). White powder; m.p.: $238-240{ }^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.239-240{ }^{\circ} \mathrm{C}^{5}\right)$; FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1660(\mathrm{C}=\mathrm{O}), 2210(\mathrm{CN})$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \delta / \mathrm{ppm}\right): 0.98\left(3 \mathrm{H}, t, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $1.58\left(2 \mathrm{H}, m, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.20\left(3 \mathrm{H}, s, \mathrm{CH}_{3}\right), 3.98\left(2 \mathrm{H}, t, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{N}\right), 5.58$ $(1 \mathrm{H}, s, 5-\mathrm{H})$; UV-vis $\left(\mathrm{EtOH}, \lambda_{\text {max }} / \mathrm{nm}\right): 325$.
${ }^{1} \mathrm{H}$-NMR SPECTRA OF THE OBTAINED 2-PYRIDONES
3-Cyano-4,6-dimethyl-2-pyridone (1)

3-Cyano-6-hydroxy-4-methyl-2-pyridone (2)

3-Cyano-1-(2-hydroxyethyl)-4,6-dimethyl-2-pyridone (3)

3-Cyano-6-hydroxy-1-(2-hydroxyethyl)-4-methyl-2-pyridone (4)

3-Cyano-4,6-dimethyl-1-propyl-2-pyridone (5)

3-Cyano-6-hydroxy-4-methyl-1-propyl-2-pyridone (6)

REFERENCES

1. D. Mijin, A. Marinković, Synth. Commun. 36 (2006) 193
(https://dx.doi.org/10.1080/00397910500334421)
2. D. Ž. Mijin, M. M. Mišić-Vuković, J. Serb. Chem. Soc. 59 (1994) 959
3. A. F. El-Essawy, A. F. Khattab, J. Heterocycl. Chem. 41 (2004) 311 (https://dx.doi.org/10.1002//het.5570410302)
4. B. D.Tilak, N. R. Ayyangar, U. S. Rao, Indian J. Chem., Sect. B 23 (1984) 18
5. S. Balalaie, E. Kowsari, M. S. Hashtroudi, Monatsh. Chem. 134 (2003) 453 (https://dx.doi.org/10.1007/s00706-002-0551-2).

[^0]: * Corresponding author. E-mail: kavur@tmf.bg.ac.rs

