SUPPLEMENTARY MATERIAL TO
Continuous flow synthesis of some 6- and 1,6-substituted 3-cyano-4-methyl-2-pyridones
JULIJANA TADIĆ1, MARINA MIHAJLOVIĆ1, MIĆA JOVANOVIC2 and DUŠAN MIJIN2*

1Innovation Center, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia and 2Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11020 Belgrade, Serbia

EXPERIMENTAL

Preparation of the reactant solutions for synthesis in continuous flow microreactor system

In the first set of experiments, the following solutions were made: acetylacetone (0.06 mol, 6.008 g) and ethyl acetoacetate (0.06 mol, 7.808 g) and added to volumetric flasks, sequentially, then methanol was added up to a volume of 100 mL. The solution of N-substituted cyanoacetamide was made in the same way. The corresponding N-substituted cyanoacetamide (0.06 mol) was placed in a volumetric flask and deionized water was added up to a volume of 100 mL. Sodium hydroxide pellets (0.07 mol, 2.8 g) were dissolved in deionized water up to a volume of 100 mL.

In the second set of experiments, compounds 1 and 2 were synthesized from the solutions prepared using the following procedure: acetylacetone (0.10 mol, 10.013 g) and ethyl acetoacetate (0.10 mol, 13.014 g) were placed in volumetric flasks, sequentially, and methanol was added up to a volume of 100 mL. Cyanoacetamide (0.15 mol, 12.612 g) and NaOH pellets (0.2 mol, 8 g) were dissolved in deionized water in volumetric flasks up to a volume of 100 mL.

Work-up of the reaction mixture in the continuous flow microreactor system

The reaction mixture assembled in the microreactor was delivered to a test tube containing 1 mL of concentrated HCl. After 9 mL of the mixture was collected, resulting crystals were separated by filtration and washed with deionized water (2 times with 5 mL). Obtained crystals were air dried and analyzed without further purification.

Synthesis under conventional conditions

6- and 1,6-substituted 3-cyano-4-methyl-2-pyridones were prepared from corresponding 1,3-dicarbonyl reagent and N-substituted cyanoacetamides using a modified literature procedure.1

*Corresponding author. E-mail: kavur@tmf.bg.ac.rs

S130
Procedure for the preparation of N-substituted 3-cyano-4,6-dimethyl-2-pyridone in the batch system

Equimolar amounts of acetylacetone and the corresponding N-substituted cyanoacetamide (0.06 mol) were heated under reflux in a water/methanol mixture (120 mL) in the presence of NaOH (0.07 mol) as catalyst for 4 h, except for 3-cyano-4,6-dimethyl-2-pyridone where the reaction time was 1 h. The products were isolated by filtration and purified by crystallization from ethanol.

Procedure for the preparation of N-substituted 3-cyano-6-hydroxy-4-methyl-2-pyridone in the batch system

Equimolar amounts of ethyl acetoacetate and the corresponding N-substituted cyanoacetamide (0.06 mol) were heated under reflux in a water/methanol mixture (120 mL) in the presence of NaOH (0.07 mol) as a catalyst for 8 h. The products were isolated by filtration and dissolved in 100 mL of hot water. After cooling, the solution was acidified with concentrated HCl to precipitate the 2-pyridone. The final product was isolated by filtration, washed with deionized water and air-dried.

CHARACTERIZATION DATA OF THE PRODUCTS OBTAINED IN THE CONTINUOUS FLOW MICROREACTOR SYSTEM

3-Cyano-4,6-dimethyl-2-pyridone (1). White powder; m.p.: 285–286 °C (Lit. 290–291 °C); FT-IR (KBr, cm–1): 3292 (N–H), 2219 (C–N), 1659 (C=O); 1H-NMR (400 MHz, DMSO-d6, δ / ppm): 2.23 (3H, s, 6-CH3), 2.30 (3H, s, 4-CH3), 6.17 (1H, s, C5-H), 12.32 (1H, s, OH); UV–Vis (EtOH, λmax / nm): 330.

3-Cyano-6-hydroxy-4-methyl-2-pyridone (2). White powder; m.p.: 315–317 °C (Lit. 315–320 °C); FT-IR (KBr, cm–1): 3294 (OH), 2223 (CN), 1593 (C=O); 1H-NMR (400 MHz, DMSO-d6, δ / ppm): 2.23 (3H, s, CH3), 5.61 (1H, s, C5-H); UV–Vis (EtOH, λmax / nm): 325.

3-Cyano-1-(2-hydroxyethyl)-4,6-dimethyl-2-pyridone (3). White powder; m.p.: 140–142 °C (Lit. 139–141 °C); FT-IR (KBr, cm–1): 3222 (CN), 1663 (C=O); 1H-NMR (400 MHz, DMSO-d6, δ / ppm): 2.39 (3H, s, CH3), 2.57 (3H, s, CH3), 3.71 (2H, t, J = 5.4 Hz, CH2), 5.04 (1H, m, OH), 6.37 (1H, s, C5-H); UV–Vis (EtOH, λmax / nm): 334.

3-Cyano-6-hydroxy-1-(2-hydroxyethyl)-4-methyl-2-pyridone (4). White powder; m.p.: 172–174 °C (Lit. 171–172 °C); FT-IR (KBr, cm–1): 3367, 3268 (OH), 1H-NMR (400 MHz, DMSO-d6, δ / ppm): 2.20 (3H, s, CH3), 3.51 (2H, t, J = 6.4 Hz, CH2–OCH2OH), 3.99 (2H, t, J = 6.6 Hz, CH2CH2OH), 5.58 (1H, s, C5-H); UV–Vis (EtOH, λmax / nm): 325.

3-Cyano-4,6-dimethyl-1-propyl-2-pyridone (5). White powder; m.p.: 110–112 °C (Lit. 114 °C); FT-IR (KBr, cm–1): 2216 (CN), 1646 (C=O); 1H-NMR (400 MHz, DMSO-d6, δ / ppm): 0.98 (3H, t, J = 7.4 Hz, CH3), 1.67 (2H, m, CH3CH2), 2.38 (3H, s, 4-CH3), 2.53 (3H, s, 6-CH3), 3.98 (2H, t, J = 7.8 Hz, CH2–N), 6.38 (1H, s, 5-H); UV–Vis (EtOH, λmax / nm): 324.

3-Cyano-6-hydroxy-1-propyl-2-pyridone (6). White powder; m.p.: 238–240 °C (Lit. 239–240 °C); FT-IR (KBr, cm–1): 1660 (C=O), 2210 (CN);
1H-NMR (400 MHz, DMSO-d_6, δ / ppm): 0.98 (3H, t, $J = 7.4$ Hz, CH$_3$CH$_2$), 1.58 (2H, m, CH$_3$CH$_2$), 2.20 (3H, s, CH$_3$), 3.98 (2H, t, $J = 7.2$ Hz, CH$_2$–N), 5.58 (1H, s, 5-H); UV-vis (EtOH, λ_{max} / nm): 325.

1H-NMR SPECTRA OF THE OBTAINED 2-PYRIDONES

3-Cyano-4,6-dimethyl-2-pyridone (1)
3-Cyano-6-hydroxy-4-methyl-2-pyridone (2)
3-Cyano-1-(2-hydroxyethyl)-4,6-dimethyl-2-pyridone (3)
3-Cyano-6-hydroxy-1-(2-hydroxyethyl)-4-methyl-2-pyridone (4)
3-Cyano-4,6-dimethyl-1-propyl-2-pyridone (5)
3-Cyano-6-hydroxy-4-methyl-1-propyl-2-pyridone (6)

REFERENCES