

J. Serb. Chem. Soc. 84 (10) S325–S326 (2019)

JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Supplementary material

SUPPLEMENTARY MATERIAL TO

A thermodynamic approach for correlating the solubility of drug compounds in supercritical CO₂ based on Peng–Robinson and Soave–Redlich–Kwong equations of state coupled with van der Waals mixing rules

NARJES SETOODEH¹, PARVIZ DARVISHI^{2*} and ABOLHASAN AMERI¹

¹Department of Chemical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran and ²Chemical Engineering Department, Yasouj University, Yasouj, Iran

J. Serb. Chem. Soc. 84 (10) (2019) 1169–1182

The constants of the PR and SRK equations of state are as below. For the SRK equation of state, $c_1=0$ and $c_2=1$.

$$a = a_{\rm c} [1 + m(1 - \sqrt{T_{\rm r}})]^2$$
(S-1)

$$a_{\rm c} = 0.42748 \frac{R^2 T_{\rm c}^2}{P_{\rm c}}$$
(S-2)

$$m = 0.48 + 1.574\,\omega - 0.176\,\omega^2 \tag{S-3}$$

$$b = 0.08664 \frac{RT_c}{P_c} \tag{S-4}$$

where T_c , P_c and ω are indicative of critical temperature, critical pressure and acentric factor. T_r and R are reduced temperature and universal gas constant. Similarly, for the PR equation of state, $c_1=1-2^{1/2}$ and $c_2=1+2^{1/2}$.

$$a = a_{\rm c} [1 + m(1 - \sqrt{T_{\rm r}})]^2$$
 (S-5)

$$a_{\rm c} = 0.42748 \frac{R^2 T_{\rm c}^2}{P_{\rm c}}$$
(S-6)

$$m = 0.37464 + 1.574226\omega - 0.26992\,\omega^2 \tag{S-7}$$

$$b = 0.007780 \frac{RT_{\rm c}}{P_{\rm c}}$$
 (S-8)

For a mixture of heavy component and SCF, the EOS parameters a and b are calculated by the following mixing rules:¹

The vdW1 mixing rule:

$$a = \sum_{i} \sum_{j} y_{i} y_{j} a_{ij}$$
(S-8)

S325

^{*}Corresponding author. E-mail: pdarvishi@yu.ac.ir

SETOODEH et al.

$$b = \sum_{j} y_{j} b_{j}$$
(S-9)

$$a_{ij} = \sqrt{a_i a_j} (1 - k_{ij})$$
 (S-10)

The vdW2 mixing rule:

$$a = \sum_{i} \sum_{j} y_i y_j a_{ij}$$
(S-11)

$$b = \sum_{i} \sum_{j} y_{i} y_{j} \mathbf{b}_{ij}$$
(S-12)

$$a_{ij} = \sqrt{a_i a_j (1 - k_{ij})}$$
(S-13)
$$b_i + b_i (1 - k_{ij})$$
(S-14)

$$b_{ij} = \frac{b_i + b_j}{2} (1 - l_{ij})$$
(S-14)

where y_i and y_j are the mole fractions of components i and j and k_{ij} and l_{ij} are the binary interaction parameters and i and j refer to the ith and jth compounds in the mixture. \hat{a}_i and \hat{b}_i in Eq. (6) of the manuscript are derivatives related to the attractive and repulsive

 \hat{a}_i and \hat{b}_i in Eq. (6) of the manuscript are derivatives related to the attractive and repulsive parameters of EOS, which are calculated from the following equations:

For the vdW1 mixing rule:

$$\hat{a}_{i} = \left[\frac{\partial(na)}{\partial n_{i}}\right]_{T,P,n_{j \neq i}} = 2\sum_{i=1}^{N} y_{i}a_{ij}$$
(S-15)

$$\hat{b}_{i} = \left[\frac{\partial(nb)}{\partial n_{i}}\right]_{T,P,n_{i\neq i}} = b_{i}$$
(S-16)

For the vdW2 mixing rule:

$$\hat{a}_{i} = \left[\frac{\partial(na)}{\partial n_{i}}\right]_{T,P,n_{j \neq i}} = 2\sum_{i=1}^{N} y_{i}a_{ij}$$
(S-17)

$$\hat{b}_{i} = \left[\frac{\partial(nb)}{\partial n_{i}}\right]_{T,P,n_{j\neq i}} = 2\sum_{i=1}^{N} y_{i} b_{ij}$$
(S-18)

S326