Journal of the Serbian Chemical Society

Supplementary material

SUPPLEMENTARY MATERIAL TO

Synthesis of two novel C-19 analogues of (\pm)-alstoscholarisine A

FILIP BIHELOVIC*, ZORANA FERJANCIC** and ZLATKO JONCEV
University of Belgrade - Faculty of Chemistry, Studentski trg 16, P. O. Box 51, 11158 Belgrade 118, Serbia

J. Serb. Chem. Soc. 84 (9) (2019) 935-941

EXPERIMENTAL PROCEDURES AND CHARACTERIZATION DATA FOR THE PREPARED COMPOUNDS

(E)-Ethyl 5-((allyloxycarbonyl)(methyl)amino)-2-(3-methyl-1 H-indol-2-yl)pent-2-enoate (12)
n-Butyllithium ($1.3 \mathrm{M}, 0.65 \mathrm{~mL} ; 0.847 \mathrm{mmol} ; 1.1 \mathrm{eq}$) was added to a solution of diisopropylamine ($120 \mu \mathrm{~L} ; 0.847 \mathrm{mmol} ; 1.1 \mathrm{eq}$) in dry THF (2 mL) at $-20^{\circ} \mathrm{C}$, under argon. After 20 min stirring, the solution of LDA was cooled to $-78{ }^{\circ} \mathrm{C}$, and a solution of ester $9^{1}(245 \mathrm{mg} ; 0.77 \mathrm{mmol})$ in THF (2 mL) was added. The pale yellow solution was stirred for 20 min , and a solution of aldehyde $\mathbf{1 0}^{2}(145 \mathrm{mg} ; 0.847 \mathrm{mmol} ; 1.1 \mathrm{eq})$ in THF (2 mL) was introduced. The reaction mixture was allowed to reach $-40^{\circ} \mathrm{C}$, over 30 min , and the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was partitioned between water and ether, the organic extract was washed with brine, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was dissolved in dry THF $(5 \mathrm{~mL})$ and sodium hydride ($24 \mathrm{mg} ; 1.0 \mathrm{mmol} ; 1.3 \mathrm{eq}$) was added in two portions, under an argon atmosphere. The reaction mixture was brought to reflux and, after 5 min , cooled down to the room temperature. Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, the product extracted with ether, the organic extract washed with brine, dried over anhydrous MgSO_{4} and concentrated on a rotovap. The residue was purified by column chromatography $(\mathrm{PhH} / \mathrm{EtOAc}=8: 2)$, to afford compound $\mathbf{1 2}$ as a colorless oil.

Yield: 213 mg (75 \%); IR (film, cm^{-1}): 3328, 2936, 1705, 1261, 1208; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}, \mathrm{DMSO}, 343 \mathrm{~K}, \delta / \mathrm{ppm}): 10.56(1 \mathrm{H}, b s), 7.47(1 \mathrm{H}, d$, $J=8.1 \mathrm{~Hz}), 7.31(1 \mathrm{H}, d, J=7.6 \mathrm{~Hz}), 7.13(1 \mathrm{H}, t, J=6.9 \mathrm{~Hz}), 7.08(1 \mathrm{H}, d t$, $\left.J_{1}=1.0 \mathrm{~Hz} \& J_{2}=7.1 \mathrm{~Hz}\right), 6.99\left(1 \mathrm{H}, d t, J_{1}=1.0 \mathrm{~Hz} \& J_{2}=7.5 \mathrm{~Hz}\right), 5.83(1 \mathrm{H}$, $b s), 5.19(d, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(d, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(d, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.17$

[^0] C
$(2 \mathrm{H}, q, J=7.0 \mathrm{~Hz}), 3.36(2 \mathrm{H}, t, J=6.7 \mathrm{~Hz}), 2.74(3 \mathrm{H}, s), 2.34(2 \mathrm{H}, q J=6.7$ Hz,$), 2.08(3 \mathrm{H}, s), 1.21(3 \mathrm{H}, t, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}, \mathrm{DMSO}, 343 \mathrm{~K}$, $\delta / \mathrm{ppm}): 165.2$, $154.8,144.4,135.6,133.1,127.9,127.8,126.9,120.7,117.8$, $117.7,116.3,110.5,108.4,64.7,60.0,46.7,33.5,28.0,13.7,8.5 ; \operatorname{HRMS}(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}$: 393.1785. Found: 393.1784.
(E)-Ethyl 5-(methylamino)-2-(3-methyl-1H-indol-2-yl)pent-2-enoate (13)

A solution of palladium acetate ($19.6 \mathrm{mg} ; 10 \mathrm{~mol} \%)$ and triphenylphosphine $(114 \mathrm{mg} ; 50 \mathrm{~mol} \%)$ in THF (16 mL) was stirred for 10 min under argon, at room temperature. A solution of carbamate $12(324 \mathrm{mg} ; 0.875 \mathrm{mmol})$ and morpholine $(1.5 \mathrm{~mL} ; 17.2 \mathrm{mmol} ; 20 \mathrm{eq})$ in THF (16 mL) was added, and the reaction mixture was stirred for 60 min . The mixture was evaporated to dryness and the residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=6: 4\right)$ to yield compound $\mathbf{1 3}$ as a pale yellowish oil.

Yield: $180 \mathrm{mg}(72 \%)$; IR (film, cm^{-1}): 3369, 3180, 2955, 1712, 1463, 1247; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 10.10(1 \mathrm{H}, b s), 7.56(1 \mathrm{H}, d, J=7.5 \mathrm{~Hz})$, $7.31(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 7.17\left(1 \mathrm{H}, d t, J_{1}=1.1 \mathrm{~Hz} \& J_{2}=7.1 \mathrm{~Hz}\right), 7.12-7.07(2 \mathrm{H}$, $m), 4.25(2 \mathrm{H}, q, J=7.1 \mathrm{~Hz}), 2.78(2 \mathrm{H}, t, J=6.2 \mathrm{~Hz}), 2.45(3 \mathrm{H}, s), 2.35(2 \mathrm{H}, d t$, $\left.J_{1}=6.5 \mathrm{~Hz} \& J_{2}=7.8 \mathrm{~Hz}\right), 2.18(3 \mathrm{H}, s), 1.42(1 \mathrm{H}, b s), 1.28(3 \mathrm{H}, t, J=7.1 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 167.0,144.4,135.7,128.9,128.1,127.7$, $121.8,118.7$ (two signals), $110.9,110.8,61.1,49.8,36.4,30.3,14.2,9.7$; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$: 287.1754. Found: 287.1761.
(\pm)-Ethyl 2,7-dimethyl-13-(2-(phenylselanyl)ethyl)-1,2,3,4,5,6-hexahydro-1,5-methano[1,3]diazocino[1,8-a]indole-6-carboxylate (15a)

A solution of amine $\mathbf{1 3}(180 \mathrm{mg} ; 0.629 \mathrm{mmol})$ and aldehyde $\mathbf{1 4}^{3}(285 \mathrm{mg}$; $1.257 \mathrm{mmol} ; 2 \mathrm{eq})$ in dry acetonitrile (15 mL) was heated to $78^{\circ} \mathrm{C}$ for 9 h , in the presence of $4 \AA$ molecular sieves $(200 \mathrm{mg})$. The reaction mixture was filtered through a plug of celite, the celite was washed with MeCN , and the filtrate was evaporated to dryness. The residue was dissolved in ethanol $(10 \mathrm{~mL})$ and sodium borohydride ($31 \mathrm{mg} ; 0.817 \mathrm{mmol} ; 1.3 \mathrm{eq}$) was added at r.t. to reduce the excess of selenoaldehyde $\mathbf{1 4}$. After stirring for 15 min , saturated ammonium chloride was added and the organics were extracted with ether, washed with brine and dried over anhydrous magnesium sulfate. The solvent was removed on a rotovap to afford a $1: 1$ mixture of diastereomeric esters $\mathbf{1 5} \mathbf{a}$ and \mathbf{b} separable on TLC. In order to perform the isomerization of $\mathbf{1 5 b}$ to $\mathbf{1 5 a}$, the crude mixture was dissolved in ethanol (10 mL), DBU ($470 \mu \mathrm{~L} ; 3.143 \mathrm{mmol} ; 5 \mathrm{eq})$ was added and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 45 min . The mixture was diluted with ether, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried over anhydrous MgSO_{4} and concentrated on a rotovap. The residue was purified by column chromatography $(\mathrm{PhH} / \mathrm{EtOAc}=95: 5)$ to yield compound 15a as a pale yellow oil.

Yield: 220 mg (71 \%); IR (film, cm^{-1}): 2933, 1729, 1456, 1176, 1157; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 7.52-7.48(3 \mathrm{H}, m), 7.37(1 \mathrm{H}, d, J=8.0$ $\mathrm{Hz}), 7.28-7.22(3 \mathrm{H}, m), 7.12\left(1 \mathrm{H}, d t, J_{1}=1.2 \mathrm{~Hz} \& J_{2}=7.0 \mathrm{~Hz}\right), 7.06(1 \mathrm{H}, d t$, $\left.J_{1}=1.2 \mathrm{~Hz} \& J_{2}=7.6 \mathrm{~Hz}\right), 5.11(1 \mathrm{H}, d, J=2.7 \mathrm{~Hz}), 4.20-4.10(2 \mathrm{H}, m), 3.97$ $(1 \mathrm{H}, s), 3.06-2.97(2 \mathrm{H}, m), 2.62(1 \mathrm{H}, t, J=6.1 \mathrm{~Hz}), 2.40-2.28(3 \mathrm{H}, m), 2.23(3 \mathrm{H}$, $s), 2.25-2.18(1 \mathrm{H}, m), 2.19(3 \mathrm{H}, s), 2.10-1.99(2 \mathrm{H}, m), 1.56(1 \mathrm{H}, b d, J=13.1$ Hz, , $1.23\left(3 \mathrm{H}, t, J=7.2 \mathrm{~Hz}\right.$,); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 172.6$, $136.6,132.4,130.3,129.4,129.1,128.3,126.8,120.7,118.8,118.0,110.2$, 106.8, 69.4, 61.1, 45.9, 45.6, 45.1, 38.2, 32.1, 30.8, 27.3, 25.4, 14.3, 8.5; HRMS $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Se}$: 497.1702. Found: 497.1691.
(土)-Ethyl 2,7-dimethyl-13-vinyl-1,2,3,4,5,6-hexahydro-1,5-methano[1,3]di-azocino[1,8-a]indole-6-carboxylate (16)
m CPBA ($77 \% ; 132 \mathrm{mg} ; 0.441 \mathrm{mmol} ; 1.1 \mathrm{eq}$) was added to a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of ester $\mathbf{1 5 a}(200 \mathrm{mg} ; 0.404 \mathrm{mmol})$ in chloroform (13 mL) and the mixture was stirred for $20 \mathrm{~min} . \mathrm{Me}_{2} \mathrm{~S}(60 \mu \mathrm{~L} ; 0.818 \mathrm{mmol} ; 2 \mathrm{eq})$ was added, followed by DIPA ($340 \mu \mathrm{~L} ; 2.426 \mathrm{mmol} ; 6 \mathrm{eq}$) and the mixture was stirred at 65 ${ }^{\circ} \mathrm{C}$ for 45 min . The volatiles were removed under reduced pressure, and the residue was purified by column chromatography $(\mathrm{PhH} / \mathrm{EtOAc}=9: 1)$, to yield compound $\mathbf{1 6}$ as a pale yellow oil.

Yield: $113 \mathrm{mg}(83 \%)$; IR (film, cm^{-1}): 2934, 1730, 1454, 1176, 1157; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 7.50(1 \mathrm{H}, d, J=7.7 \mathrm{~Hz}), 7.40(1 \mathrm{H}, d$, $J=8.1 \mathrm{~Hz}), 7.13\left(1 \mathrm{H}, d t, J_{1}=1.2 \mathrm{~Hz} \& J_{2}=7.1 \mathrm{~Hz}\right), 7.07\left(1 \mathrm{H}, d t, J_{1}=1.0 \mathrm{~Hz} \&\right.$ $\left.J_{2}=7.4 \mathrm{~Hz}\right), 6.36\left(1 \mathrm{H}, d d d, J_{1}=7.4 \mathrm{~Hz}, J_{2}=10.7 \mathrm{~Hz} \& J_{3}=17.2 \mathrm{~Hz}\right), 5.27(1 \mathrm{H}$, $\left.d t, J_{1}=1.5 \mathrm{~Hz} \& J_{2}=8.5 \mathrm{~Hz}\right), 5.24(1 \mathrm{H}, d, J=1.2 \mathrm{~Hz}), 5.18(1 \mathrm{H}, d, J=2.9 \mathrm{~Hz}$, 4.22-4.09 ($2 \mathrm{H}, m$), $4.00(1 \mathrm{H}, s), 3.22(1 \mathrm{H}, d, J=6.9 \mathrm{~Hz}), 2.47-2.41(2 \mathrm{H}, m)$, $2.40-2.30(1 \mathrm{H}, m), 2.26(3 \mathrm{H}, s), 2.21(3 \mathrm{H}, s), 2.10\left(1 \mathrm{H}, d t, J_{1}=4.1 \mathrm{~Hz} \&\right.$ $\left.J_{2}=12.7 \mathrm{~Hz}\right), 1.60(1 \mathrm{H}, b d, J=14.1 \mathrm{~Hz}), 1.24(3 \mathrm{H}, t, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}$): 172.6, 138.4, 136.7, 129.0, 128.3, 120.8, 118.9, $118.1,116.6,110.2,106.9,70.2,61.1,45.8,45.7,45.1,42.0,33.6,27.5,14.3$, 8.6; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}$: 339.2067. Found: 339.2067.

(2,7-Dimethyl-13-vinyl-1,2,3,4,5,6-hexahydro-1,5-methano[1,3]diazocino[1,8-a]-indol-6-yl)methanol (17)

A solution of DIBAL-H in hexane ($1 \mathrm{M} ; 7 \mathrm{~mL} ; 6.97 \mathrm{mmol} ; 20 \mathrm{eq}$) was added to a cold $\left(-20^{\circ} \mathrm{C}\right)$ solution of alkene $\mathbf{1 6}(118 \mathrm{mg} ; 0.349 \mathrm{mmol})$ in dichloromethane (30 mL) under argon. The mixture was stirred for 30 min and then quenched by careful addition of a saturated aqueous solution of Rochelle's salt. After additional stirring for 1 h at room temperature, the mixture was extracted with ether. The organic extract was washed with brine, dried over anhydrous MgSO_{4}, concentrated under reduced pressure and the residue was purified by
column chromatography $(\mathrm{PhH} / \mathrm{EtOAc}=1: 1)$ to afford compound $\mathbf{1 7}$ as a white solid.

Yield: $83 \mathrm{mg}(81 \%)$; white solid; m.p.: $88-90^{\circ} \mathrm{C}$; IR (film, cm^{-1}): 3361 , 2932, 1457, 1323, 1038; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 7.49(1 \mathrm{H}, d$, $J=7.9 \mathrm{~Hz}), 7.39(1 \mathrm{H}, d, J=8.2 \mathrm{~Hz}), 7.11\left(1 \mathrm{H}, d t, J_{1}=1.6 \mathrm{~Hz} \& J_{2}=7.5 \mathrm{~Hz}\right)$, $7.07\left(1 \mathrm{H}, d t, J_{1}=1.2 \mathrm{~Hz} \& J_{2}=7.4 \mathrm{~Hz}\right.$, $), 6.40\left(1 \mathrm{H}, d d d, J_{1}=7.3 \mathrm{~Hz}, J_{2}=10.7 \mathrm{~Hz}\right.$ $\left.\& J_{3}=17.8 \mathrm{~Hz}\right), 5.29\left(1 \mathrm{H}, d t, J_{1}=1.5 \& J_{2}=9.9 \mathrm{~Hz}\right), 5.26(1 \mathrm{H}, t, J=1.6 \mathrm{~Hz})$, $5.16(1 \mathrm{H}, d, J=2.6 \mathrm{~Hz}), 3.88\left(1 \mathrm{H}, d d, J_{1}=3.5 \mathrm{~Hz} \& J_{2}=10.2 \mathrm{~Hz}\right), 3.67(1 \mathrm{H}, t$, $J=9.2 \mathrm{~Hz}), 3.27\left(1 \mathrm{H}, d d, J_{1}=4.4 \mathrm{~Hz} \& J_{2}=9.4 \mathrm{~Hz}\right), 2.94(1 \mathrm{H}, d, J=6.9 \mathrm{~Hz})$, $2.47-2.40(2 \mathrm{H}, m), 2.40-2.33(1 \mathrm{H}, m), 2.32(3 \mathrm{H}, s), 2.21(3 \mathrm{H}, s), 2.08(1 \mathrm{H}, d t$, $\left.J_{1}=3.8 \mathrm{~Hz} \& J_{2}=12.3 \mathrm{~Hz}\right), 1.56(1 \mathrm{H}, b s, \mathrm{OH}), 1.51(1 \mathrm{H} b d, J=13.3 \mathrm{~Hz}$,$) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 138.8,136.6,132.5,128.4,120.5,118.8$, 117.7, 116.2, 110.1, 105.3, 70.5, 64.3, 46.3, 45.1, 42.2, 41.3, 30.9, 27.5, 9.1; HRMS (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}: 297.1961$. Found: 297.1956.
1-(6-(Hydroxymethyl)-2,7-dimethyl-1,2,3,4,5,6-hexahydro-1,5-methano[1,3]di-azocino[1,8-a]indol-13-yl)ethane-1,2-diol (18)

A solution of alcohol 17 ($81 \mathrm{mg} ; 0.273 \mathrm{mmol}$), $\mathrm{OsO}_{4}(2.5 \%$ in t - $\mathrm{BuOH} ; 73$ $\mu \mathrm{L} ; 2 \mathrm{~mol} \%$) and NMO (50% solution in water; $280 \mu \mathrm{~L} ; 1.37 \mathrm{mmol} ; 5 \mathrm{eq}$) in THF/ $\mathrm{H}_{2} \mathrm{O}=2: 1(6 \mathrm{~mL})$ was stirred for 13 h at room temperature. An excess of solid sodium sulfite was added and the suspension was stirred for additional 30 min. The reaction mixture was diluted with diethyl ether, the organic layer washed with brine and dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure, to afford $88 \mathrm{mg}(98 \%)$ of compound $\mathbf{1 8}$, as a mixture of inseparable diastereoisomers, in form of a colorless solid. Compound $\mathbf{1 8}$ was used in the following step without purification.

6-(Hydroxymethyl)-2,7-dimethyl-1,2,3,4,5,6-hexahydro-1,5-methano[1,3]diazocino [1,8-a]indole-13-carbaldehyde (19)

Lead tetraacetate ($180 \mathrm{mg} ; 0.41 \mathrm{mmol} ; 1.5 \mathrm{eq}$) was added to a solution of crude triol ($88 \mathrm{mg} ; 0.266 \mathrm{mmol}$) in ethyl acetate $(75 \mathrm{~mL})$ and the mixture was stirred at room temperature for 30 min . The resulting orange suspension was filtered through a pad of celite and silica (eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9: 1$) and the clear filtrate was evaporated on a rotovap to yield crude compound 19. This aldehyde (77 mg) was used in the following step without purification.

12,13-Dimethyl-1,2,5,6-tetrahydro-6,15-(iminopropan[1]yl[3]ylidene)-4H-[1.5]-oxazocino[5.4-a]indol-4-one (8)

DBU ($34 \mu \mathrm{~L} ; 0.23 \mathrm{mmol} ; 1 \mathrm{eq}$) was added to a solution of freshly prepared aldehyde 19 in chloroform (2 mL), and the mixture was stirred at room temperature for 45 min . Dess-Martin periodinane ($390 \mathrm{mg} ; 0.92 \mathrm{mmol} ; 4 \mathrm{eq}$) was added to the reaction mixture and stirring was continued for 60 min . The mixture
was diluted with ether, washed with 10% sodium thiosulfate solution, saturated sodium bicarbonate and brine, and the organic extract was dried over anhydrous MgSO_{4}. After concentration on a rotovap, the residue was purified by column chromatography $(\mathrm{PhH} / \mathrm{EtOH}=9: 1)$, to afford $23 \mathrm{mg}(35 \%$ over 3 steps, from compound 18) of pure lactone 8 .

White solid; m.p.: $180-182{ }^{\circ} \mathrm{C}$; IR (film, cm^{-1}): 2921, 2853, 1730, 1457, 1242; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 7.50(1 \mathrm{H}, d, J=7.9 \mathrm{~Hz}$), $7.39(1 \mathrm{H}$, $d, J=8.3 \mathrm{~Hz}), 7.14\left(1 \mathrm{H}, d t, J_{1}=1.2 \mathrm{~Hz} \& J_{2}=7.1 \mathrm{~Hz}\right), 7.09\left(1 \mathrm{H}, d t, J_{1}=1.1 \mathrm{~Hz}\right.$ \& $\left.J_{2}=7.9 \mathrm{~Hz}\right), 5.54(1 \mathrm{H}, d, J=3.1 \mathrm{~Hz}), 4.56\left(1 \mathrm{H}, d d, J_{1}=2.5 \mathrm{~Hz} \& J_{2}=10.0\right.$ $\mathrm{Hz}), 4.23\left(1 \mathrm{H}, d d, J_{1}=1.3 \mathrm{~Hz} J_{2}=10.3 \mathrm{~Hz}\right), 3.47-3.41(2 \mathrm{H}, m), 2.65(b s, 1 \mathrm{H})$, 2.44-2.36 ($\mathrm{m}, 1 \mathrm{H}$), $2.38(s, 3 \mathrm{H}), 2.27(s, 3 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.98(1 \mathrm{H}, d t$, $\left.J_{1}=3.8 \mathrm{~Hz} \& J_{2}=12.5 \mathrm{~Hz}\right), 1.88(1 \mathrm{H}, b d, J=13.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 169.8,136.9,132.0,128.8,121.3,119.5,118.1,110.8,105.9$, 76.3, 69.7, $45.5,45.1,44.8,32.8,29.4,28.0,8.2$. HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$: 297.1598. Found: 297.1597 .
(1R,4S,5R,6S, 16S)-12,13-Dimethyl-4-phenyl-1,2,5,6-tetrahydro-6, 15-(iminopro-pan[1]yl[3]ylidene)-4H-[1.5]oxazocino[5.4-a]indol-4-ol (21)

IR (film, cm^{-1}): $3311,2928,1456,1340 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta / \mathrm{ppm}): 7.52(1 \mathrm{H}, d, J=7.4 \mathrm{~Hz}), 7.36-7.22(5 \mathrm{H}, m), 7.08-7.05(1 \mathrm{H}, m), 7.02$ $\left(1 \mathrm{H}, d t, J_{1}=1.2 \mathrm{~Hz} \& J_{2}=8.0 \mathrm{~Hz}\right), 6.93(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 4.37(1 \mathrm{H}, d, J=2.3$ $\mathrm{Hz}), 4.28\left(1 \mathrm{H}, d d, J_{1}=1.2 \mathrm{~Hz} \& J_{2}=9.9 \mathrm{~Hz}\right), 3.56\left(1 \mathrm{H}, d d, J_{1}=2.5 \mathrm{~Hz} \&\right.$ $\left.J_{2}=10.0 \mathrm{~Hz}\right), 3.08(1 \mathrm{H}, s), 2.90-2.85(1 \mathrm{H}, m), 2.50(1 \mathrm{H}, s), 2.24(3 \mathrm{H}, s)$, $2.22-2.16(1 \mathrm{H}, m), 2.05-1.99(1 \mathrm{H}, m), 1.97(3 \mathrm{H}, s), 1.81\left(1 \mathrm{H}, d d, J_{1}=4.1 \mathrm{~Hz} \&\right.$ $\left.J_{2}=12.3 \mathrm{~Hz}\right), 1.79-1.75(1 \mathrm{H}, m) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 142.9$, 137.0, 135.4, 128.9, 128.6, 128.3, 126.1, 120.3, 118.8, 117.9, 110.3, 104.0, 97.9, 68.6, 68.4, 46.5, 46.1, 45.4, 34.4, 30.3, 29.0, 8.3; HRMS (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}: 375.2067$. Found: 375.2061.
> (1R,4R,5R,6S, 16S)-4-Butyl-12,13-dimethyl-1,2,5,6-tetrahydro-6,15-(iminopro-pan[1]yl[3]ylidene)-4H-[1.5]oxazocino[5.4-a/indol-4-ol (22)

IR (film, cm^{-1}): 3390, 2929, 2864, 1458, $1321 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta / \mathrm{ppm}): 7.50-7.48(1 \mathrm{H}, m), 7.38(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}), 7.12-7.03(2 \mathrm{H}, m), 5.27$ $(1 \mathrm{H}, s), 4.13\left(1 \mathrm{H}, d d, J_{1}=1.1 \mathrm{~Hz} \& J_{2}=10.0 \mathrm{~Hz}\right), 3.44\left(1 \mathrm{H}, d d, J_{1}=2.5 \mathrm{~Hz}\right.$ \& $\left.J_{2}=10.0 \mathrm{~Hz}\right), 3.06(1 \mathrm{H}, s), 2.78-2.75(1 \mathrm{H}, m), 2.48-2.42(1 \mathrm{H}, m), 2.39-2.35$ $(1 \mathrm{H}, m), 2.33(3 \mathrm{H}, s), 2.24(3 \mathrm{H}, s), 2.16-2.06(1 \mathrm{H}, m), 1.97-1.90(1 \mathrm{H}, m)$, $1.84-1.78(1 \mathrm{H}, m), 1.76-1.70(1 \mathrm{H}, m), 1.53-1.38(3 \mathrm{H}, m), 1.38-1.32(2 \mathrm{H}, m)$, 0.93 ($3 \mathrm{H}, t, J=7.2 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$-NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}$): 136.9, 135.2, 128.9, 120.3, 118.8, 118.0, 109.9, 104.6, 97.2, 68.0, 67.9, 45.9, 45.7, 43.3, 38.9, 34.6, 30.1, 28.1, 24.5, 22.8, 14.0, 8.0; $\operatorname{HRMS}(m / z):[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}$: 355.2380 . Found: 355.2372 .
(1R,4S,5R,6S,16S)-12,13-Dimethyl-4-phenyl-1,2,5,6-tetrahydro-6,15-(iminopro-pan[1]yl[3]ylidene)-4H-[1.5]oxazocino[5.4-a]indole (6)

IR (film, cm^{-1}): $2929,2860,1458,1344,1112 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta / \mathrm{ppm}): 7.54-7.51(1 \mathrm{H}, m), 7.28-7.26(3 \mathrm{H}, m), 7.16-7.13(1 \mathrm{H}, m), 7.10-7.06$ $(4 \mathrm{H}, m), 4.80-4.76(1 \mathrm{H}, m), 4.75(1 \mathrm{H}, d, J=3.0 \mathrm{~Hz}), 3.88\left(1 \mathrm{H}, d d, J_{1}=2.5 \mathrm{~Hz} \&\right.$ $\left.J_{2}=10.0 \mathrm{~Hz}\right), 3.84(1 \mathrm{H}, d, J=10.0 \mathrm{~Hz}), 3.17(1 \mathrm{H}, s), 2.52(1 \mathrm{H}, s), 2.49-2.42$ $(1 \mathrm{H}, m), 2.38-2.29(1 \mathrm{H}, m), 2.30(3 \mathrm{H}, s), 2.19-2.10(1 \mathrm{H}, m), 2.13(3 \mathrm{H}, s)$, 1.96-1.85 (2H, m); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta / \mathrm{ppm}\right): 139.8,136.9,135.4$, $128.9,128.3,127.5,125.9,120.3,118.7,117.9,110.1,104.1,80.6,73.5,67.2$, 46.1, 45.2, 43.6, 34.7, 33.7, 30.5, 8.1; HRMS $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}: 359.2118$. Found: 359.2122 .
(1R,4R,5R,6S, 16S)-4-Butyl-12,13-dimethyl-1,2,5,6-tetrahydro-6,15-(iminopro-pan[1]yl[3]ylidene)-4H-[1.5]oxazocino[5.4-a]indole (7)

IR (film, cm^{-1}): 2927, 2855, 1459, 1333, 1096; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}, \delta / \mathrm{ppm}\right): 7.53(1 \mathrm{H}, d, J=8.2 \mathrm{~Hz}), 7.45(1 \mathrm{H}, d, J=7.8 \mathrm{~Hz}), 7.05-7.03$ $(1 \mathrm{H}, m), 7.00-6.97(1 \mathrm{H}, m), 5.43(1 \mathrm{H}, d, J=2.0 \mathrm{~Hz}), 3.71-3.67(1 \mathrm{H}, m), 3.64$ $\left(1 \mathrm{H}, d d, J_{1}=2.2 \mathrm{~Hz} \& J_{2}=10.0 \mathrm{~Hz}\right), 3.61-3.56(1 \mathrm{H}, m), 3.17(1 \mathrm{H}, s), 2.37(1 \mathrm{H}$, $\left.d d, J_{1}=6.2 \mathrm{~Hz} \& J_{2}=12.0 \mathrm{~Hz}\right), 2.31-2.29(1 \mathrm{H}, m), 2.28(3 \mathrm{H}, s), 2.24-2.21(1 \mathrm{H}$, $m), 2.23(3 \mathrm{H}, s), 2.14-2.07(m, 1 \mathrm{H}), 1.90\left(d t, J_{1}=4.0, J_{2}=12.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.86-1.81$ $(m, 1 \mathrm{H}), 1.62-1.51(2 \mathrm{H}, m), 1.41-1.31(4 \mathrm{H}, m), 0.91(3 \mathrm{H}, t, J=7.0 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta / \mathrm{ppm}\right): 138.7,137.1,130.4,121.5,120.0$, $118.8,111.4,105.3,79.8,74.6,68.2,47.6,45.8,42.2,36.5,34.8,33.7,31.4$, 29.4, 23.8, 14.5, 8.2; HRMS $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}: 339.2431$. Found: 339.2434.

REFERENCES

1. F. Bihelovic, Z. Ferjancic, Angew. Chem., Int. Ed. 55 (2016) 2569
2. a) S. Blechert, R. Knier, H. Schroers, T. Wirth, Synthesis (1995) 592; b) A. Wohl, M. S. Losanitsch, Chem. Ber. 96 (1907) 4685
3. J. Becker, L. Butt, V. von Kiedrowski, E. Mischler, F. Quentin, M. Hiersemann, J. Org. Chem. 79 (2014) 3040.

[^0]: *** Corresponding authors. E-mail: (*)filip@chem.bg.ac.rs; (**)zferjan@chem.bg.ac.rs

