1	Synthesis and efficacy of copper(II) complexes bearing $N(4)$ -substituted
2	thiosemicarbazide and diimine co-ligands on plasmid DNA and HeLa cell lines
3	NEELAVENI RAJENDRAN ¹ , ABIRAMI PERIYASAMY ² , NITHYA KAMATCHI ³ and
4	VASANTHA SOLOMON ¹ *
5	¹ PG and Research Department of Chemistry, Lady Doak College, Madurai – 625002,
6	Tamil Nadu, India ² Department of Biotechnology, Lady Doak College, Madurai – 625002,
7	Tamil Nadu, India and ${}^{3}PG$ and Research Department of Zoology, Lady Doak College,
8	Madurai – 625002, Tamil Nadu, India
9	SUPPLEMENTARY DATA
10	Synthesis of thiosemicarbazone ligands
11	Preparation of 1-phenyl-2-((5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)thio)ethanone HL
12	Color: Colorless; Yield: 68%; m.p 190 – 192°C ; Anal.Calcd for C15H12N4OS: C, 60.79; H,
13	4.08; N, 18.19; S, 10.82%; Found: C, 60.68; H, 4.02; N, 18.25; S, 10.77%; Λ_m (Ω^{-1} cm ² mol ⁻¹):
14	5; ¹ H NMR (300 MHz, DMSO): $\delta_{\rm H}$ 9.15 (s, 1H), 8.59 (s, 1H), 8.26 (d, $J = 6.0$ Hz, 1H), 8.06
15	(d, $J = 6.0$ Hz, 2H), $7.66 - 7.61$ (m, 1H), $7.54 - 7.49$ (m, 2H), 7.39 (s, 2H), 4.87 (s, 2H).
16	General method of preparation of $H(L1) - H(L3)$
17	(E)-N-methyl-2-(1-phenyl-2-((5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)
18	hydrazinecarbothioamide H(L1)
19	Color: Yellow; Yield: 74%; m.p 212 – 214°C; Anal.Calcd for C17H17N7S2: C, 53.24; H, 4.47;
20	N, 25.57; S, 16.72 %. Found: C, 53.36; H, 4.44; N, 25.61; S, 16.80 %; Λ_m ($\Omega^{-1}cm^2 mol^{-1}$): 4;
21	¹ H NMR (300 MHz, DMSO): $\delta_{\rm H}$ 10.88 (s, 1H), 9.32 (s, 1H), 9.23 (d, $J = 15$ Hz, 1H), 8.66 (s,
22	1H), 8.54 (d, $J = 9.0$ Hz, 1H), 8.25 (d, $J = 3.0$ Hz, 1H), 8.10 (s, 1H), 7.85 (t, $J = 3.0$ Hz, 1H),
23	7.56 (m, 1H), 7.43 (d, $J = 3.0$ Hz, 3H), 4.59 (s, 2H), 3.19 (d, $J = 6.0$ Hz, 3H); ¹³ C NMR (75)
24	MHz, DMSO): δ _C 179.5, 162.9, 151.0, 148.2, 147.8, 145.5, 136.4, 134.9, 133.8, 130.0, 129.3,
25	128.9, 127.3, 124.1, 36.8, 31.7, 26.8.FT-IR (KBr; cm ⁻¹): 3340 (s, N(4)H), 3199, (s, N(2)H),
26	1554 (s, C=N), 813 (s, C=S), 987 (s, N–N); UV–Vis: λ_{max} (DMF) nm: 225, 295 and 355.
27	(E) - N- ethyl- 2- (1- phenyl- 2- ((5- (pyridin- 3- yl)- 4H- 1, 2, 4- triazol- 3- yl) thio) ethylidene)
28	hydrazinecarbothioamide H(L2)

¹ * Corresponding author E-mail: vasantha@ldc.edu.in (Tel:+919976366463)

- 29 Color: Yellow; Yield: 70%; m.p 222 – 224°C; Anal.Calcd for C₁₈H₁₉N₇S₂: C, 54.39; H, 4.82; S, 16.13 %. Found: C, 54.42; H, 4.91; N, 24.79; S, 16.09 %; $\Lambda_{\rm m}$ (Ω^{-1} cm² mol⁻¹): N, 24.66; 30 7; ¹H NMR (300 MHz, DMSO): $\delta_{\rm H}$ 11.08 (s, 1H), 9.51 (s, 1H), 8.85 (d, J = 30.0 Hz, 2H), 8.53 31 (m, 1H), 8.14 (m, 1H), 7.96 (m, 2H), 7.86 (s, 1H), 7.62 (m, 3H), 4.75 (s, 2H), 3.95 (m, 2H), 32 J = 6.0 Hz, 3H); ¹³C NMR (75 MHz, DMSO): $\delta_{\rm C}$ 179.7, 160.1, 157.8, 157.4, 155.3, 33 1.46 (t. 154.9, 148.0, 136.9, 134.2, 131.8, 128.9, 128.8, 128.4, 128.1, 124.3, 38.1, 39.9, 15.8; FT-IR 34 (KBr; cm⁻¹): 3240 (m, N(4)H), 2970 (s, N(2)H), 1518 (s, C=N), 808 (s, C=S), 977 (s, N-N); 35 UV–Vis: λ_{max} (DMF) nm: 280 and 360. 36
- 37 (*E*)-*N*-phenyl-2-((1-phenyl-2-((5-(pyridin-3-yl)-4H-1,2,4-triazol-3-yl)thio)ethylidene)
- 38 *hydrazinecarbothioamide H(L3)*
- Color: Yellow; Yield: 61%; m.p 235 237°C; Anal.Calcd for C₂₂H₁₉N₇S₂: C, 59.30; H, 4.30; 39 N, 22.01; S, 14.39%. Found: C, 59.26; H, 4.21; N, 22.11; S, 14.38 %; Λ_m (Ω^{-1} cm² mol⁻¹): 11; ¹H 40 NMR (300 MHz, DMSO): δ_H 11.60 (s, 1H), 10.02 (s, 1H), 9.74 (s, 1H), 9.61 (s, 2H), 8.99 -41 8.96 (m, 1H), 8.90 - 8.88 (d, J = 6.0 Hz, 1H), 8.65 - 8.63 (d, J = 6.0 Hz, 1H), 8.43 - 8.40 (d, J)42 = 9.0 Hz, 1H), 8.35 (s, 2H), 8.03 - 7.95 (m, 1H), 7.91 - 7.86 (m, 1H), 7.81 - 7.72 (m, 1H), 43 7.70 - 7.63 (m, 1H), 7.59 - 7.57 (m, 1H), 7.32 - 7.27 (m, 1H), 5.17 (s, 2H); 13 C NMR (75) 44 MHz, DMSO): δ_C 184.7, 155.1, 157.9, 157.5, 155.4, 148.1, 138.7, 135.8, 135.8, 132.7, 133.1, 45 131.2, 129.2, 129.0, 128.9, 128.8, 128.5, 128.4, 128.2, 126.9, 124.1, 38.4; FT-IR (KBr; cm⁻¹): 46 3290 (s, N(4)H), 3147 (s, N(2)H), 1534 (s, C=N), 826 (s, C=S), 973 (s, N-N); UV-Vis: λ_{max} 47 (DMF) nm: 310 and 345. 48
- 49 Synthesis of copper(II) bis complexes (C1 C3)
- 50 $[Cu(L1)_2](C1)$
- 51 Color: Green; Yield: 69%; Anal.Calcd for: C₃₄H₃₂CuN₁₄S₄: C, 49.29; H, 3.89; N, 25.67; S,
- 52 15.48%; Found: C, 49.17; H, 3.81; N, 23.62; S, 15.39%; Λ_m (Ω^{-1} cm² mol⁻¹):16; FT–IR (KBr;
- 53 cm⁻¹): 3059 (s, N(4)H), 1562 (s, C=N), 738 (s, C-S), 1047 (s, N-N), 425 (m, Cu-N) and 612
- 54 (m, Cu–S); UV–Vis: λ_{max} (DMF) nm: 295, 360 and 635 (d–d transition); EPR: $A_{\parallel} = 158 \times 10^{-4}$
- 55 cm^{-1} ; $g_{\parallel} = 2.252$; $g_{\perp} = 2.057$; $g_{\parallel} / A_{\parallel} = 140 \text{ cm}$; G = 4.38. The similar method was applied for
- the synthesis of complexes 2 and 3 using H(L2) and H(L3) instead of H(L1).
- 57 $[Cu(L2)_2](C2)$
- 58 Color: Green; Yield: 62%; Anal.Calcd for: C₃₆H₃₆CuN₁₄S₄: C, 50.48; H, 4.24; N, 22.89;
- 59 S, 14.97%; Found: C, 50.54; H, 4.29; N, 22.95; S, 14.89%; Λ_m (Ω^{-1} cm² mol⁻¹): 17; FT–IR
- 60 (KBr; cm⁻¹): 3061 (s, NH), 1556 (s, C=N), 738 (s, C–S), 1012 (s, N–N), 430 (m, Cu–N) and

- 61 621 (s, Cu–S); UV–Vis: λ_{max} (DMF) nm: 290, 412 and 645 (d–d transition); EPR: A_{||} = 162 x
- 62 10^{-4} cm^{-1} ; $g_{\parallel} = 2.249$; $g_{\perp} = 2.056$; $g_{\parallel} / A_{\parallel} = 138 \text{ cm}$; G = 4.59.
- $[Cu(L3)_2](C3)$
- 64 Color: Green; Yield: 58%; Anal.Calcd for: C44H₃₆CuN14S4: C, 55.47; H, 3.81; N, 20.58;
- 65 S, 13.46%; Found: C, 55.56; H, 3.75; N, 20.51; S, 13.49%; Λ_m (Ω⁻¹cm² mol⁻¹): 18; FT–IR
- 66 (KBr; cm⁻¹): 3091(s, NH), 1572 (s, C=N), 745 (s, C–S), 1131 (s, N–N), 618 (s, Cu–N) and
- 67 428 (s, Cu–S); UV–Vis: λ_{max} (DMF) nm: 318, 380 and 715 (d–d transition); EPR: A_{||} = 160 x
- $\label{eq:constraint} 68 \qquad 10^{-4} \ cm^{-1}; \ g_{\parallel} = 2.258; \ g_{\perp} = 2.062; \ g_{\parallel} / A_{ll} = 141 \ cm; \ G = 4.28.$
- 69 Synthesis of mixed ligand copper(II) complexes (C4–C9)
- 70 [Cu(L1)(bpy)]Cl(C4)
- To the 2 mmol ethanolic solution of ligand H(L1), solution of 2,2'-bipyridyl (1 mmol in ethanol) was added by constant stirring for 1 h. To this solution, copper(II) chloride dihydrate was added dropwise and again stirred for 30 min. Subsequently, the green precipitate obtained was washed several times with cold ethanol and dried. Color: Green; Yield: 61%; Anal.Calcd for: C₂₇H₂₄ClCuN₉S₂: C, 50.86; H, 3.79; N, 19.77; S, 10.06%; Found: C, 50.92; H, 3.71; N, 19.84; S, 50.88%; Λ_m (Ω^{-1} cm² mol⁻¹): 83; FT–IR (KBr; cm⁻¹): 3098 (s, NH), 1553 (s, C=N),
- 77 761 (s, C–S), 1115 (s, N–N), 461 (s, Cu–N), 641 (s, Cu–S); UV–Vis: λ_{max} (DMF) nm: 310,
- 78 395 and 745 (d-d transition); EPR: $A_{\parallel} = 163 \times 10^{-4} \text{ cm}^{-1}$; $g_{\parallel} = 2.257$; $g_{\perp} = 2.074$; $g_{\parallel} / A_{\parallel} = 139$
- 79 cm; G = 4.55.
- 80 The similar method was applied for the synthesis of complexes 5 and 6 using H(L2) and H(L3)
- 81 instead of H(L1).
- 82 [Cu(L2)(bpy)]Cl(C5)
- 83 Color: Green; Yield: 72%; Anal.Calcd for: C₂₈H₂₆ClCuN₉S₂: C, 51.60; H, 4.02; N, 19.34; S,
- 84 9.84%; Found: C, 51.70; H, 3.97; N, 19.34; S, 9.81%; Λ_m (Ω^{-1} cm² mol⁻¹): 89; FT–IR (KBr;
- 85 cm^{-1}): 3074 (s, NH), 1559 (s, C=N), 758 (s, C–S), 1109 (s, N–N), 456 (s, Cu–N) and 643 (s,
- 86 Cu–S); UV–Vis: λ_{max} (DMF) nm: 295, 415 and 725 (d–d transition); EPR: $A_{\parallel} = 160 \times 10^{-4}$
- 87 cm^{-1} ; $g_{\parallel} = 2.268$; $g_{\perp} = 2.063$; $g_{\parallel} / A_{\parallel} = 141 cm$; G = 4.38.
- 88 [*Cu*(*L3*)(*bpy*)]*Cl*(*C6*)
- 89 Color: Green; Yield: 68%; Anal.Calcd for: C₃₂H₂₆ClCuN₉S₂: C, 54.93; H, 3.75; N, 18.02;
- 90 S, 9.16%; Found: C, 54.89; H, 3.70; N, 18.07; S, 9.15%; Λ_m (Ω^{-1} cm² mol⁻¹): 96; FT–IR (KBr;
- 91 cm⁻¹): 3088 (s, NH), 1549 (s, C=N), 752 (s, C-S), 1008 (s, N-N), 441 (s, Cu-N), 628 (s,
- 92 Cu–S); UV–Vis: λ_{max} (DMF) nm: 335, 370 and 758 (d–d transition); EPR: A_{||} = 162 x 10⁻⁴
- 93 cm^{-1} ; $g_{\parallel} = 2.254$; $g_{\perp} = 2.071$; $g_{\parallel} / A_{\parallel} = 139 \text{ cm}$; G = 3.66.

- 94 Complexes 7, 8 and 9 was prepared in a similar manner to complex 4, using 1,1095 phenanthroline instead of 2,2'-bipyridyl.
- 96 [*Cu*(*L1*)(*phen*)]*Cl*(*C7*)
- 97 Color: Green; Yield: 75%; Anal.Calcd for: C₂₉H₂₄ClCuN₉S₂: C, 52.64; H, 3.66; N, 19.05; S,
- 98 9.69%; Found: C, 52.70; H, 3.61; N, 19.11; S, 9.74%; Λ_m (Ω^{-1} cm² mol⁻¹): 93; FT–IR (KBr;

cm⁻¹): 3055 (s, NH), 1568 (s, C=N), 775 (s, C-S), 1045 (s, N-N), 424 (s, Cu-N), 642 (s,

- 100 Cu–S); UV–Vis: λ_{max} (DMF) nm: 290, 335 and 685 (d–d transition); EPR: A_{II} = 163 x 10⁻⁴
- $100 \quad 00 \quad 000 \quad 000 \quad 000 \quad 0000 \quad$
- $\label{eq:cm-1} \text{101} \qquad \text{cm}^{-1}; \ g_{\parallel} = 2.257; \ \ g_{\perp} = 2.059; \ g_{\parallel} / A_{ll} = 141 \ \text{cm}; \ G = 4.49.$
- $102 \quad [Cu(L2)(phen)]Cl(C8)$

- 103 Color: Green; Yield: 68%; Anal.Calcd for: C₃₀H₂₆ClCuN₉S₂: C, 53.32; H, 3.88; N, 18.66;
- 104 S, 9.49%; Found: C, 53.29; H, 3.81; N, 18.70; S, 9.43%; Λ_m (Ω^{-1} cm² mol⁻¹): 98; FT–IR (KBr;
- 105 cm⁻¹): 3055 (s, NH), 1516 (s, C=N), 777 (s, C-S), 998 (s, N-N), 426 (s, Cu-N), 653
- 106 (s, Cu–S); UV–Vis: λ_{max} (DMF) nm: 295, 390 and 725 (d–d transition); EPR: $A_{\parallel} = 162 \times 10^{-4}$
- 107 cm^{-1} ; $g_{\parallel} = 2.258$; $g_{\perp} = 2.064$; $g_{\parallel} / A_{\parallel} = 140 \text{ cm}$; G = 4.14.
- 108 [Cu(L3)(phen)]Cl(C9)
- 109 Color: Green; Yield: 60%; Anal.Calcd for: C₃₄H₂₆ClCuN₁₄S₄: C, 56.42; H, 3.62; N, 17.42;
- 110 S, 8.86%; Found: C, 56.46; H, 3.59; N, 17.49; S, 8.89%; $\Lambda_m (\Omega^{-1} cm^2 mol^{-1})$: 103; FT–IR (KBr;
- 111 cm⁻¹): 3059 (s, NH), 1543 (s, C=N), 771 (s, C-S), 1103 (s, N-N), 423 (s, Cu-N), 632
- 112 (s, Cu–S); UV–Vis: λ_{max} (DMF) nm: 335, 430 and 735 (d–d transition); EPR: $A_{\parallel} = 162 \times 10^{-4}$
- 113 cm^{-1} ; $g_{\parallel} = 2.260$; $g_{\perp} = 2.059$; $g_{\parallel}/A_{\parallel} = 139 \text{ cm}$; G = 4.54.

Fig. 2. ¹³C NMR spectrum of H(L1) in DMSO-d₆

Fig. 4. Electronic spectra of complex C5 in DMF

Fig. 5. X-band EPR spectrum of complex C7 in frozen DMF solution

138

Fig. 6. Cyclic voltammogram of complex C2

139

Table I. Electrochemical data of thiosemicarbazone copper(II) complexes 1-9

Complexes	Cyclic	voltamm	ogram ^a	Differential pulse voltammogram ^a	Redox process
	Epa	Epc	E1/2	E _{1/2} (DPV)	
	(V)	(V)	(V)	(V)	
[Cu(L1) ₂](C1)	0.309	0.572	0.441	0.601	$Cu(II) \rightarrow Cu(I)$
[Cu(L2) ₂] (C2)	0.324	0.542	0.433	0.529	$\mathrm{Cu}(\mathrm{II}) \rightarrow \mathrm{Cu}(\mathrm{I})$
[Cu(L3) ₂] (C3)	0.332	0.498	0.415	0.471	$\mathrm{Cu}(\mathrm{II}) \rightarrow \mathrm{Cu}(\mathrm{I})$
[Cu(L1)(bpy)]Cl (C4)	0.327	0.598	0.463	0.637	$\mathrm{Cu}(\mathrm{II}) \rightarrow \mathrm{Cu}(\mathrm{I})$
[Cu(L2)(bpy)]Cl (C5)	0.258	0.662	0.460	0.598	$\mathrm{Cu}(\mathrm{II}) \rightarrow \mathrm{Cu}(\mathrm{I})$
[Cu(L3)(bpy)]Cl (C6)	0.572	0.598	0.345	0.446	$Cu(II) \rightarrow Cu(I)$
[Cu(L1)(phen)]Cl (C7)	0.327	0.559	0.659	0.643	$\mathrm{Cu}(\mathrm{II}) \rightarrow \mathrm{Cu}(\mathrm{I})$
[Cu(L2)(phen)]Cl (C8)	0.247	0.576	0.640	0.612	$Cu(II) \rightarrow Cu(I)$
[Cu(L3)(phen)]Cl (C9)	0.022	0.551	0.638	0.587	$Cu(II) \rightarrow Cu(I)$

140 a DMF (1 x 10^{-3} M), $E_{1/2} = 0.5$ ($E_{pa} + E_{pc}$), $\Delta E_p = E_{pa} - E_{pc}$, where E_{pa} and E_{pc} were anodic and cathodic peak

141 potentials respectively (Scan rate 50mVs⁻¹)

Ligand	Diameter of inhibition zone (mm) ^a					
and	Е.	coli	Bacillus sp.			
Complexes	5 (µg / ml)	50 (µg / ml)	5 (µg / ml)	50 (µg / ml)		
H(L1)	1	2	0	1		
H(L2)	1	4	0	1		
H(L3)	1	2	0	1		
[Cu(L1) ₂](C1)	3	5	4	5		
[Cu(L2) ₂] (C2)	3	6	2	4		
[Cu(L3) ₂] (C3)	2	5	1	3		
[Cu(L1)(bpy)]Cl (C4)	2	4	4	6		
[Cu(L2)(bpy)]Cl (C5)	2	5	5	7		
[Cu(L3)(bpy)]Cl (C6)	3	6	6	8		
[Cu(L1)(phen)]Cl (C7)	5	8	7	10		
[Cu(L2)(phen)]Cl (C8)	7	9	6	11		
[Cu(L3)(phen)]Cl (C9)	3	5	5	8		
(positive control) ^b	9	9	13	13		
(Negative control) ^c	NA	NA	NA	NA		

Table II. Diameter of zone of inhibition of thiosemicarbazone ligands and copper(II) complexes

143 ^a Mean zone of inhibition in mm ^b standard antibacterial agent used was chloramphenicol (positive control) ^c

144 Dimethyl formamide (negative control), NA = No activity

145 Table III. Percentage of cytotoxicity of the thiosemicarbazone ligands and its copper(II) complexes

Compounds	Cytotoxicity ^a , %
	HeLa ^b
H(L1)	56.38 ± 0.31
H(L2)	34.00 ± 0.10
H(L3)	46.00 ± 0.01
[Cu(L1) ₂](C1)	21.62 ± 0.10
[Cu(L2) ₂] (C2)	66.00 ± 0.21
[Cu(L3) ₂] (C3)	54.00 ± 0.09
[Cu(L1)(bpy)]Cl (C4)	60.84 ± 0.36
[Cu(L2)(bpy)]Cl (C5)	59.00 ± 0.05
[Cu(L3)(bpy)]Cl (C6)	60.00 ± 0.12
[Cu(L1)(phen)]Cl (C7)	81.79 ± 0.26
[Cu(L2)(phen)]Cl (C8)	84.00 ± 0.04
[Cu(L3)(phen)]Cl (C9)	73.00 ± 0.04
Cisplatin ^c	96.00 ± 0.01

^a Percentage of cytotoxicity at 5 μM for 24 h with standard error values ^b Cervical cancer cell lines ^c Positive

147 control

148